Ετικέτες

Πέμπτη 27 Ιανουαρίου 2022

A structured ICA-based process for removing auditory evoked potentials

xlomafota13 shared this article with you from Inoreader

Sci Rep. 2022 Jan 26;12(1):1391. doi: 10.1038/s41598-022-05397-3.

ABSTRACT

Transcranial magnetic stimulation (TMS)-evoked potentials (TEPs), recorded using electroencephalography (EEG), reflect a combination of TMS-induced cortical activity and multi-sensory responses to TMS. The auditory evoked potential (AEP) is a high-amplitude sensory potential-evoked by the "click" sound produced by every TMS pulse-that can dominate the TEP and obscure observation of other neural components. The AEP is peripherally evoked and therefore should not be stimulation site specific. We address the problem of disentangling the peripherally evoked AEP of the TEP from components evoked by cortical stimulation and ask whether removal of AEP enables more accurate isolation of TEP. We hypothesized that isolation of the AEP using Independent Components Analysis (ICA) would reveal features that are stimulation site specific and unique individual features. In order to i mprove the effectiveness of ICA for removal of AEP from the TEP, and thus more clearly separate the transcranial-evoked and non-specific TMS-modulated potentials, we merged sham and active TMS datasets representing multiple stimulation conditions, removed the resulting AEP component, and evaluated performance across different sham protocols and clinical populations using reduction in Global and Local Mean Field Power (GMFP/LMFP) and cosine similarity analysis. We show that removing AEPs significantly reduced GMFP and LMFP in the post-stimulation TEP (14 to 400 ms), driven by time windows consistent with the N100 and P200 temporal characteristics of AEPs. Cosine similarity analysis supports that removing AEPs reduces TEP similarity between subjects and reduces TEP similarity between stimulation conditions. Similarity is reduced most in a mid-latency window consistent with the N100 time-course, but nevertheless remains high in this time window. Residual TEP in this window has a time-c ourse and topography unique from AEPs, which follow-up exploratory analyses suggest could be a modulation in the alpha band that is not stimulation site specific but is unique to individual subject. We show, using two datasets and two implementations of sham, evidence in cortical topography, TEP time-course, GMFP/LMFP and cosine similarity analyses that this procedure is effective and conservative in removing the AEP from TEP, and may thus better isolate TMS-evoked activity. We show TEP remaining in early, mid and late latencies. The early response is site and subject specific. Later response may be consistent with TMS-modulated alpha activity that is not site specific but is unique to the individual. TEP remaining after removal of AEP is unique and can provide insight into TMS-evoked potentials and other modulated oscillatory dynamics.

PMID:35082350 | DOI:10.1038/s41598-022-05397-3

View on the web

A dose-neutral image quality comparison of different CBCT and CT systems using paranasal sinus imaging protocols and phantoms

xlomafota13 shared this article with you from Inoreader

Eur Arch Otorhinolaryngol. 2022 Jan 27. doi: 10.1007/s00405-022-07271-4. Online ahead of print.

ABSTRACT

PURPOSE: To compare the image quality produced by equivalent low-dose and default sinus imaging protocols of a conventional dental cone-beam computed tomography (CBCT) scanner, an extremity CBCT scanner and a clinical multidetector computed tomography (MDCT) scanner.

METHODS: Three different phantoms were scanned using dose-neutral ultra-low-dose and low-dose sinus imaging protocols, as well as default sinus protocols of each device. Quantified parameters of image quality included modulation transfer function (MTF) to characterize the spatial response of the imaging system, contrast-to-noise ratio, low contrast visibility, image uniformity and Hounsfield unit accuracy. MTF was calculated using the line spread and edge spread functions (LSF and ESF).

RESULTS: The dental CBCT had superior performance over the extremity CBC T in each studied parameter at similar dose levels. The MDCT had better contrast-to-noise ratio, low contrast visibility and image uniformity than the CBCT scanners. However, the CBCT scanners had better resolution compared to the MDCT. Accuracy of HU values for different materials was on the same level between the dental CBCT and MDCT, but substantially poorer performance was observed with the extremity CBCT.

CONCLUSIONS: The studied dental CBCT scanner showed superior performance over the studied extremity CBCT scanner when using dose-neutral imaging protocols. In case a dental CBCT is not available, the given extremity CBCT is still a viable option as it provides the benefit of high resolution over a conventional MDCT.

PMID:35084532 | DOI:10.1007/s00405-022-07271-4

View on the web

Αναζήτηση αυτού του ιστολογίου