Publication date: Available online 23 August 2017
Source:Sensors and Actuators B: Chemical
Author(s): Thomas Allsop, Vojtěch Kundrat, Kyriacos Kalli, Graham B. Lee, Ron Neal, Peter Bond, Baogul Shi, John Sullivan, Phil Culverhouse, David J. Webb
We detect changes in the optical properties of a metal oxide semiconductor (MOS), ZnO, in a multi-thin-film matrix with platinum in the presence of the hydrocarbon gas methane. A limit of detection of 2% by volume with concentrations from 0 to 10% and maximum resolution of 0.15% with concentrations ranging from 30% to 80% at room temperature are demonstrated along with a selective chemical response to methane over carbon dioxide and the other alkane gases. The device yields the equivalent maximum bulk refractive index spectral sensitivity of 1.8×105nm/RIU. This is the first time that the optical properties of MOS have been monitored to detect the presence of a specific gas. This single observation is a significant result, as MOS have a potentially large number of target gases, thus offering a new paradigm for gas sensing using MOSs.
http://ift.tt/2xv0VO4
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
Ετικέτες
Πέμπτη 24 Αυγούστου 2017
Methane Detection Scheme based upon the Changing Optical Constants of a Zinc Oxide/Platinum Matrix created by a Redox Reaction and their effect upon Surface Plasmons
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
-
Publication date: September 2017 Source: European Journal of Surgical Oncology (EJSO), Volume 43, Issue 9 http://ift.tt/2gezJ2D
-
Publication date: January–February 2018 Source: Materials Today, Volume 21, Issue 1 Author(s): David Bradley http://ift.tt/2BP...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου