Ετικέτες

Τετάρτη 13 Σεπτεμβρίου 2017

Evolution of crystal structure of Cu precipitates in a low carbon steel

Publication date: 5 December 2017
Source:Materials & Design, Volume 135
Author(s): G. Han, Z.J. Xie, Z.Y. Li, B. Lei, C.J. Shang, R.D.K. Misra
Intercritical tempering at 680°C for different times was carried out in a low carbon copper-bearing steel to study the evolution of the crystal structure of Cu precipitates by high resolution transmission electron microscopy. With increased tempering time, four different types of crystal structure of copper precipitates with different sizes were observed, namely, (a) nano-ordered clusters comprised of B2 FeCu nano-ordered clusters (2–3nm) and weak ordered BCC Cu nanoclusters (2–3nm), (b) 9R Cu (5–12nm) - multiple twinned structure consisted of two, six or seven 9R twins with an orientation relationship of (1 1–4)9R∥(0 1 1)α, [−1 1 0]9R∥[1 −1 1]α, (c) detwinned 9R Cu (24–26nm) consisted of two 9R parts and a removable interface (1 1–4)9R, and (d) FCC Cu (~37nm) precipitates consisted of two parts of FCC Cu and a micro-twinned region. The evolution sequence of crystal structure of Cu precipitates was: nano-ordered clusters→9R Cu→detwinned 9R Cu→FCC Cu. The maximum contribution to precipitation hardening is attributed to nano-ordered clusters.

Graphical abstract

image


http://ift.tt/2h2CZyA

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αναζήτηση αυτού του ιστολογίου