Ετικέτες

Παρασκευή 20 Απριλίου 2018

Recombinant BCG::Rv2645 elicits enhanced protective immunity compared to BCG in vivo with induced ISGylation-related genes and Th1 and Th17 responses

S0264410X.gif

Publication date: Available online 20 April 2018
Source:Vaccine
Author(s): Wei Luo, Zilu Qu, Lingyun Zhang, Yan Xie, Fengling Luo, Yang Tan, Qin Pan, Xiao-Lian Zhang
There is a need to develop protective vaccines against tuberculosis (TB). Recently, we identified an immunodominant T-cell antigen, Rv2645, from the region of deletion 13 (RD13) of M. tuberculosis (M. tb) H37Rv, which is absent in Bacille Calmette-Guérin (BCG). Here, a recombinant BCG expressing Rv2645, namely, BCG::Rv2645, was constructed. Compared to BCG, we found that BCG::Rv2645 improved the antigen presentation capacity of dendritic cells (DCs) and elicited much stronger Th1 and Th17 responses, higher CD44highCD62low effector memory CD4+ T cells (TEM), and fewer T regulated cells (Treg) and regulatory B10 in mice. Importantly, BCG::Rv2645 exhibited enhanced protective efficacy against virulent M. tb H37Rv challenge in both mice and rhesus monkeys, showing less severe pathology and reduced pathogens. Further, transcriptomic analysis and reverse transcription-quantitative real time PCR revealed that the mRNA levels of ISGylation (Isg)-related genes such as interferon-stimulated gene 15 (Isg15), and Th1- and Th17-related genes such as interferon-γ (IFN-γ) and interleukin-17A (IL-17A) were significantly up-regulated in splenocytes and macrophages after stimulation with Rv2645. This study shows that BCG::Rv2645 is a promising TB vaccine candidate with enhanced protective immunity. The enhanced Th1/Th17 immune responses and up-regulation of ISGylation-related genes induced by Rv2645 may be major factors contributing to the protective immunity of BCG::Rv2645.



https://ift.tt/2HG1FbV

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αναζήτηση αυτού του ιστολογίου