Publication date: Available online 19 June 2018
Source:Ultrasound in Medicine & Biology
Author(s): Kimoon Yoo, Wesley R. Walker, Ross Williams, Charles Tremblay-Darveau, Peter N. Burns, Paul S. Sheeran
Phase-shift droplets can be converted by sound from low-echogenicity, liquid-core agents into highly echogenic microbubbles. Many proposed applications in imaging and therapy take advantage of the high spatiotemporal control over this dynamic transition. Although some studies have reported increased circulation time of the droplets compared with microbubbles, few have directly explored the impact of encapsulation on droplet performance. With the goal of developing nanoscale droplets with increased circulatory persistence, we first evaluate the half-life of several candidate phospholipid encapsulations in vitro at clinical frequencies. To evaluate in vivo circulatory persistence, we develop a technique to periodically measure droplet vaporization from high-frequency B-mode scans of a mouse kidney. Results show that longer acyl chain phospholipids can dramatically reduce droplet degradation, increasing median half-life in vitro to 25.6 min—a 50-fold increase over droplets formed from phospholipids commonly used for clinical microbubbles. In vivo, the best-performing droplet formulations showed a median half-life of 18.4 min, more than a 35-fold increase in circulatory half-life compared with microbubbles with the same encapsulation in vivo. These findings also point to possible refinements that may improve nanoscale phase-shift droplet performance beyond those measured here.
https://ift.tt/2JViOfA
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
Ετικέτες
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
-
Summary Insulinomas are rare neuroendocrine tumours that classically present with fasting hypoglycaemia. This case report discusses an un...
-
The online platform for Taylor & Francis Online content New for Canadian Journal of Remote Sen...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου