Publication date: 1 November 2018
Source:Chemical Engineering Journal, Volume 351
Author(s): Youchen Gu, Chen Ye, Xuewen Yin, Jianhua Han, Yu zhou, Heping Shen, Jianbao Li, Xiaojing Hao, Hong Lin
Cadmium sulfide (CdS) is the most widely used buffer material for a variety of thin-film solar cells including Cu2ZnSnS4. However, reports have shown that CdS film obtained by chemical bath deposition (CBD) is not the ideal buffer layer for pure sulfide CZTS solar cell. Zinc doping is a viable approach to modifying the CdS buffer film, but the present methods are far from satisfactory. Here, we innovatively developed an effective way of Zinc doping using partial electrolyte (PE) treatment, resulting in state-of-the-art buffer layer for solar cells based on high-surface-waviness CZTS light absorber. Our study shows that this Zn PE-treated CdS film improved the properties including coverage, full-range light transmittance and conduction band alignment with CZTS. Ultimately, the resultant modified CdS film boosted the open-circuit voltage of our devices by more than 100 mV, yielding power conversion efficiency (PCE) of 3.30%. We note that this is the highest efficiency that has been reported for all solution-processed CZTS solar cells.
https://ift.tt/2tMrrm1
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
Ετικέτες
Πέμπτη 28 Ιουνίου 2018
Realizing zinc-doping of CdS buffer layer via partial electrolyte treatment to improve the efficiency of Cu2ZnSnS4 solar cells
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
-
Summary Insulinomas are rare neuroendocrine tumours that classically present with fasting hypoglycaemia. This case report discusses an un...
-
The online platform for Taylor & Francis Online content New for Canadian Journal of Remote Sen...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου