Ετικέτες

Τρίτη 20 Μαρτίου 2018

RELATIONSHIP BETWEEN SELENOPROTEIN P AND SELENOCYSTEINE LYASE: INSIGHTS INTO SELENIUM METABOLISM

Publication date: Available online 20 March 2018
Source:Free Radical Biology and Medicine
Author(s): Lucia A. Seale, Herena Y. Ha, Ann C. Hashimoto, Marla J. Berry
Selenoprotein P (SelenoP) functions as a plasma transporter of selenium (Se) from liver to other tissues via incorporation into multiple selenocysteine (Sec) residues. Selenocysteine lyase (Scly) is an intracellular enzyme that decomposes Sec into selenide, providing Se for the synthesis of new selenoproteins. Both SelenoP and Scly are mostly produced by the liver. Previous studies demonstrated that male mice lacking SelenoP (SelenoP KO) or Scly (Scly KO) had increased or decreased total hepatic Se, respectively. While SelenoP regulation by Se is well-studied, Scly regulation by Se has not been reported. We hypothesize that Scly is negatively regulated by Se levels, and that absence of SelenoP jeopardizes Scly-dependent Se recycling. Using in vitro and in vivo models, we unveiled a tissue-specific Se regulation of Scly gene expression. We also determined that SelenoP, a considered source of intracellular Se, affects Scly expression and activity in vitro but not in vivo, as in the absence of SelenoP, Scly levels and activity remain normal. We also showed that absence of SelenoP does not increase levels of transsulfuration pathway enzymes, which would result in available selenocompounds being decomposed by the actions of cystathionine γ-lyase (CGL or CTH) and cystathionine β-synthase (CBS). Instead, it affects levels of thioredoxin reductase 1 (Txnrd1), an enzyme that can reduce selenite to selenide to be used in selenoprotein production. This study evaluates a potential interplay between SelenoP and Scly, providing further insights into the regulation of selenium metabolism.

Graphical abstract

image


http://ift.tt/2GLHJS7

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αναζήτηση αυτού του ιστολογίου