Anapafseos 5 . Agios Nikolaos
Crete.Greece.72100
2841026182
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
Hair straighteners are very popular around the world, although they can cause great damage to the hair. Thus, the characterization of the mechanical properties of curly hair using advanced techniques is very important to clarify how hair straighteners act on hair fibers and to contribute to the development of effective products. On this basis, we chose two nonconventional hair straighteners (formaldehyde and glyoxylic acid) to investigate how hair straightening treatments affect the mechanical properties of curly hair.
The mechanical properties of curly hair were evaluated using a tensile test, differential scanning calorimetry (DSC) measurements, scanning electronic microscopy (SEM), a torsion modulus, dynamic vapor sorption (DVS), and Fourier transform infrared spectroscopy (FTIR) analysis.
The techniques used effectively helped the understanding of the influence of nonconventional hair straighteners on hair properties. For the break stress and the break extension tests, formaldehyde showed a marked decrease in these parameters, with great hair damage. Glyoxylic acid had a slight effect compared to formaldehyde treatment. Both treatments showed an increase in shear modulus, a decrease in water sorption and damage to the hair surface.
A combination of the techniques used in this study permitted a better understanding of nonconventional hair straightener treatments and also supported the choice of the better treatment, considering a good relationship between efficacy and safety. Thus, it is very important to determine the properties of hair for the development of cosmetics used to improve the beauty of curly hair.
Publication date: 5 June 2017
Source:Materials & Design, Volume 123
Author(s): A. Kouadri-Henni, C. Seang, B. Malard, V. Klosek
This study aimed at characterizing the residual stresses distribution of a DP600 undergoing a laser beam welding. The residual stresses in the ferritic phase have been experimentally determined by the use of the neutron diffraction technique. The results confirmed a gradient of residual stresses among different zones both on the top and below surfaces but also through the thickness of the fusion zone. Low compressive stresses were observed in the BM (Base metal) close to the HAZ zone (heat affected zone) whereas high tensile stresses were observed in the FZ (fusion zone). Two numerical modelling strategies were conducted: first with elastic plastic model (EP) and then with a visco-elastic plastic model (VEP) which takes into account the effect of phase transformation-induced volumetric strain. Both models allowed highlighting the residual stresses evolution through the different zones. Numerical results showed a difference in the residual stresses distribution depending on the model used. In the end, it appears that the high temperature, specific to the laser beam, is the main factor governing the residual stresses. When comparing simulation results with experimental data, the values converge well in some zones, in particular the FZ and the others less.
Publication date: 5 June 2017
Source:Materials & Design, Volume 123
Author(s): M. Kuhtz, A. Hornig, M. Gude, H. Jäger
Concepts to adjust the delamination behaviour of textile reinforced composites are investigated. The composite interfaces are modified by adjusting the interlaminar contact area using perforated PTFE-foils. According mode I and mode II energy release rates are determined and a progressive correlation between the interlaminar contact area and energy release rates is identified. The results are exploited within three point bending experiments to adapt the structural delamination and subsequent energy dissipation behaviour with the proposed interface modification concept. Two structural designs concepts are evaluated numerically: adjusting structural energy dissipation capacity and adjusting the peak levels as well as the characteristic trends of the structural reactive forces. It is demonstrated, that the mechanical response of composite structures can be tailored by controlling their delamination behaviour.
Publication date: 5 June 2017
Source:Materials & Design, Volume 123
Author(s): Cheng Wang, Yi-Chia Liao, Jinn P. Chu, Chun-Hway Hsueh
The viscous flow typically plays an important role for the deformation of metallic glasses in the supercooled liquid region. This deformation behavior has been widely investigated for bulk metallic glasses. However, studies on the viscous flow and viscosity measurement of thin film metallic glasses (TFMGs) were sparse. In this work, we synthesized four compositions of fully amorphous AuCuSi TFMGs by magnetron sputtering. The glass transition temperature, which is also the temperature of the critical transition point from elastic/plastic deformation to time-dependent viscous flow, was determined using nanoindentation. The nanoindentation creep tests performed with hemispherical and Berkovich indenter tips in the temperature range of 50 to 170°C were proven to be suitable for the viscosity measurements of AuCuSi TFMGs. The activation energy of the flow process was also evaluated from the indentation results and good agreement was obtained between the results evaluated from hemispherical and Berkovich tips. Finally, a nano-scaled imprinted AuCuSi TFMG showed great topological resolution.
Publication date: 5 June 2017
Source:Materials & Design, Volume 123
Author(s): Erfan Salahinejad, Reza Vahedifard
One of the drawbacks of metals and alloys in biomedical applications is their inefficient fixation to adjacent tissues which can be fairly addressed by applying bioactive ceramic coatings. In this work, colloidal suspensions based on coprecipitation-derived nanoparticulate diopside (CaMgSi2O6) were deposited on stainless steel 316L by dip-coating and subsequent low-temperature sintering. Afterwards, the structure, bioactivity and biodegradation of the samples were in vitro evaluated by spectroscopic and microscopic techniques. The apatite-forming ability of the surface was found to be improved by using the nanodiopside coating, while controlled by a typical ion-exchange reaction mechanism originating from the film's degradability. In this regard, after soaking the coated samples in a simulated body fluid, an integrated leaf-like precipitation of apatite at early stages and a following non-uniform rose-like growth of apatite with an increased level of the carbonate substitution for hydroxyl were detected. It is eventually concluded that nanodiopside coatings deserve further consideration and development in the biomedical field, where a bioactive fixation is needed along the implant/tissue interface.
Publication date: 5 June 2017
Source:Materials & Design, Volume 123
Author(s): Jian Song, Lei Zhang, Jian Yang, Xin-Hua Huang, Jin-Song Hu
Construction of hierarchical structure assembled by ultrathin nanosheet is one of the important challenges in material chemistry and photocatalytic field, because this kind of material can combine the advantages of hierarchical structure and ultrathin material. Herein, we propose an ion-exchange approach to the fabrication of novel hierarchical porous Bi24O31Br10 microstructures assembled by ultrathin nanosheets with thicknesses of 3–5nm through a facile reflux process, employing previously-prepared Bi25VO40 micro-cubes as precursors of Bi3+ ions. Experiments revealed that the Bi24O31Br10 hierarchical structures possessed a high surface area (~67.16m2/g) and abundant mesopores, leading to the strong adsorption capacity for rhodamine B (RhB) with high concentration. The maximal adsorption quantity of the product was calculated to be 24.4mg/g. Photocatalytic results demonstrated that the as-prepared Bi24O31Br10 sample exhibited a significant structure-induced enhancement of photocatalytic performance. After 12min of UV–visible-light irradiation, 96% of RhB solution (40mg/L) could be completely decomposed. In addition, the trapping experiments confirmed that photo-generated hole was believed as the chief active specie in the degradation process of RhB molecule.Novelty statementConstruction of hierarchical structure assembled by ultrathin nanosheet is one of the important challenges in material chemistry, because this kind material can combine the advantages of hierarchical structure and ultrathin material. Unfortunately, controllable fabrication about hierarchical porous Bi24O31Br10 microstructures is still a huge challenge until today. Therefore, we afford a facile ion-exchange approach to the fabrication of novel hierarchical porous Bi24O31Br10 microstructures built up by ultrathin nanosheets. Moreover, benefiting from the unique hierarchical and ultrathin structural features, the as-obtained Bi24O31Br10 hierarchical structures exhibited strong adsorption abilities towards RhB with high concentration, as well as superior photocatalytic performance.
This study was performed to evaluate the feasibility of noninvasive measurement of the ANB angle using photographic and ultrasonographic methods.
Twenty consecutive orthodontic patients were evaluated. The ANB angle and soft tissue thickness covering the N, A, and B cephalometric points were measured by lateral teleradiography; these measurements were made by two expert operators. The soft tissue thickness covering the N, A, and B cephalometric points was measured by ultrasonography; these measurements were also made by two expert operators. On a 1:1 photographic profile print on which the ultrasonographic points were marked, the ANB ultrasonographic angle was measured. The following comparisons were considered: averaged and single measurements of N, A, and B points by first versus second ultrasonographer; averaged and single ultrasonographic versus radiographic soft tissue thickness covering the N, A, B points; and averaged and single ultrasonographic versus radiographic measurements of ANB angle.
High correlation and concordance of the averaged and single measurements, but no significant difference, was found between the two ultrasonographers. No statistically significant difference was found between the two methods for measuring averaged soft tissue thickness, but a 20% difference was found for the single measurements. High correlation and concordance between the ultrasonographic and radiographic measurements, but no significant difference, was found between the single and averaged ANB angle measurements.
Ultrasonography seems to be a noninvasive and reliable technique for measurement of the ANB angle and may replace radiographic measurement in some cases.
Publication date: 21 March 2017
Source:Cell Reports, Volume 18, Issue 12
Author(s): Katrin Hoffmeyer, Dirk Junghans, Benoit Kanzler, Rolf Kemler
Wnt/β-catenin signaling is required for embryonic stem cell (ESC) pluripotency by inducing mesodermal differentiation and inhibiting neuronal differentiation; however, how β-catenin counter-regulates these differentiation pathways is unknown. Here, we show that lysine 49 (K49) of β-catenin is trimethylated (β-catMe3) by Ezh2 or acetylated (β-catAc) by Cbp. Significantly, β-catMe3 acts as a transcriptional co-repressor of the neuronal differentiation genes sox1 and sox3, whereas β-catAc acts as a transcriptional co-activator of the key mesodermal differentiation gene t-brachyury (t-bra). Furthermore, β-catMe3 and β-catAc are alternatively enriched on repressed or activated genes, respectively, during ESC and adult stem cell differentiation into neuronal or mesodermal progenitor cell lineages. Importantly, expression of a β-catenin K49A mutant results in major defects in ESC differentiation. We conclude that β-catenin K49 trimethylation and acetylation are key elements in regulating ESC pluripotency and differentiation potential.
Publication date: 21 March 2017
Source:Cell Reports, Volume 18, Issue 12
Author(s): Chunhui Wang, John R. Christin, Maja H. Oktay, Wenjun Guo
Delineating the mammary differentiation hierarchy is important for the study of mammary gland development and tumorigenesis. Mammary luminal cells are considered a major origin of human breast cancers. However, how estrogen-receptor-positive (ER+) and ER− luminal cells are developed and maintained remains poorly understood. The prevailing model suggests that a common stem/progenitor cell generates both cell types. Through genetic lineage tracing in mice, we find that SOX9-expressing cells specifically contribute to the development and maintenance of ER− luminal cells and, to a lesser degree, basal cells. In parallel, PROM1-expressing cells give rise only to ER+ luminal cells. Both SOX9+ and PROM1+ cells specifically sustain their respective lineages even after pregnancy-caused tissue remodeling or serial transplantation, demonstrating characteristic properties of long-term repopulating stem cells. Thus, our data reveal that mouse mammary ER+ and ER− luminal cells are two independent lineages that are maintained by distinct stem cells, providing a revised mammary epithelial cell hierarchy.
Publication date: 21 March 2017
Source:Cell Reports, Volume 18, Issue 12
Author(s): Giusy Di Conza, Sarah Trusso Cafarello, Xingnan Zheng, Qing Zhang, Massimiliano Mazzone
B55α is a regulatory subunit of the PP2A phosphatase. We have recently found that B55α-associated PP2A promotes partial deactivation of the HIF-prolyl-hydroxylase enzyme PHD2. Here, we show that, in turn, PHD2 triggers degradation of B55α by hydroxylating it at proline 319. In the context of glucose starvation, PHD2 reduces B55α protein levels, which correlates with MDA-MB231 and MCF7 breast cancer cell death. Under these conditions, PHD2 silencing rescues B55α degradation, overcoming apoptosis, whereas in SKBR3 breast cancer cells showing resistance to glucose starvation, B55α knockdown restores cell death and prevents neoplastic growth in vitro. Treatment of MDA-MB231-derived xenografts with the glucose competitor 2-deoxy-glucose leads to tumor regression in the presence of PHD2. Knockdown of PHD2 induces B55α accumulation and treatment resistance by preventing cell apoptosis. Overall, our data unravel B55α as a PHD2 substrate and highlight a role for PHD2-B55α in the response to nutrient deprivation.
Publication date: 21 March 2017
Source:Cell Reports, Volume 18, Issue 12
Author(s): Ineke Brouwer, Hongshan Zhang, Andrea Candelli, Davide Normanno, Erwin J.G. Peterman, Gijs J.L. Wuite, Mauro Modesti
Human RAD52 promotes annealing of complementary single-stranded DNA (ssDNA). In-depth knowledge of RAD52-DNA interaction is required to understand how its activity is integrated in DNA repair processes. Here, we visualize individual fluorescent RAD52 complexes interacting with single DNA molecules. The interaction with ssDNA is rapid, static, and tight, where ssDNA appears to wrap around RAD52 complexes that promote intra-molecular bridging. With double-stranded DNA (dsDNA), interaction is slower, weaker, and often diffusive. Interestingly, force spectroscopy experiments show that RAD52 alters the mechanics dsDNA by enhancing DNA flexibility and increasing DNA contour length, suggesting intercalation. RAD52 binding changes the nature of the overstretching transition of dsDNA and prevents DNA melting, which is advantageous for strand clamping during or after annealing. DNA-bound RAD52 is efficient at capturing ssDNA in trans. Together, these effects may help key steps in DNA repair, such as second-end capture during homologous recombination or strand annealing during RAD51-independent recombination reactions.
Publication date: 21 March 2017
Source:Cell Reports, Volume 18, Issue 12
Author(s): Bipul R. Acharya, Selwin K. Wu, Zi Zhao Lieu, Robert G. Parton, Stephan W. Grill, Alexander D. Bershadsky, Guillermo A. Gomez, Alpha S. Yap
Formins are a diverse class of actin regulators that influence filament dynamics and organization. Several formins have been identified at epithelial adherens junctions, but their functional impact remains incompletely understood. Here, we tested the hypothesis that formins might affect epithelial interactions through junctional contractility. We focused on mDia1, which was recruited to the zonula adherens (ZA) of established Caco-2 monolayers in response to E-cadherin and RhoA. mDia1 was necessary for contractility at the ZA, measured by assays that include a FRET-based sensor that reports molecular-level tension across αE-catenin. This reflected a role in reorganizing F-actin networks to form stable bundles that resisted myosin-induced stress. Finally, we found that the impact of mDia1 ramified beyond adherens junctions to stabilize tight junctions and maintain the epithelial permeability barrier. Therefore, control of tissue barrier function constitutes a pathway for cadherin-based contractility to contribute to the physiology of established epithelia.
Publication date: 21 March 2017
Source:Cell Reports, Volume 18, Issue 12
Author(s): Laura J. Stoppel, Benjamin D. Auerbach, Rebecca K. Senter, Anthony R. Preza, Robert J. Lefkowitz, Mark F. Bear
Synaptic protein synthesis is essential for modification of the brain by experience and is aberrant in several genetically defined disorders, notably fragile X (FX), a heritable cause of autism and intellectual disability. Neural activity directs local protein synthesis via activation of metabotropic glutamate receptor 5 (mGlu5), yet how mGlu5 couples to the intracellular signaling pathways that regulate mRNA translation is poorly understood. Here, we provide evidence that β-arrestin2 mediates mGlu5-stimulated protein synthesis in the hippocampus and show that genetic reduction of β-arrestin2 corrects aberrant synaptic plasticity and cognition in the Fmr1−/y mouse model of FX. Importantly, reducing β-arrestin2 does not induce psychotomimetic activity associated with full mGlu5 inhibitors and does not affect Gq signaling. Thus, in addition to identifying a key requirement for mGlu5-stimulated protein synthesis, these data suggest that β-arrestin2-biased negative modulators of mGlu5 offer significant advantages over first-generation inhibitors for the treatment of FX and related disorders.
Publication date: 21 March 2017
Source:Cell Reports, Volume 18, Issue 12
Author(s): Manuel J. Muñoz, Nicolás Nieto Moreno, Luciana E. Giono, Adrián E. Cambindo Botto, Gwendal Dujardin, Giulia Bastianello, Stefania Lavore, Antonio Torres-Méndez, Carlos F.M. Menck, Benjamin J. Blencowe, Manuel Irimia, Marco Foiani, Alberto R. Kornblihtt
We have previously found that UV irradiation promotes RNA polymerase II (RNAPII) hyperphosphorylation and subsequent changes in alternative splicing (AS). We show now that UV-induced DNA damage is not only necessary but sufficient to trigger the AS response and that photolyase-mediated removal of the most abundant class of pyrimidine dimers (PDs) abrogates the global response to UV. We demonstrate that, in keratinocytes, RNAPII is the target, but not a sensor, of the signaling cascade initiated by PDs. The UV effect is enhanced by inhibition of gap-filling DNA synthesis, the last step in the nucleotide excision repair pathway (NER), and reduced by the absence of XPE, the main NER sensor of PDs. The mechanism involves activation of the protein kinase ATR that mediates the UV-induced RNAPII hyperphosphorylation. Our results define the sequence UV-PDs-NER-ATR-RNAPII-AS as a pathway linking DNA damage repair to the control of both RNAPII phosphorylation and AS regulation.
Publication date: 21 March 2017
Source:Cell Reports, Volume 18, Issue 12
Author(s): Wen Chen, Nana Liu, Hongxia Zhang, Haiping Zhang, Jing Qiao, Wenwen Jia, Songcheng Zhu, Zhiyong Mao, Jiuhong Kang
Induced pluripotent stem cells (iPSCs) have great potential for treating age-related diseases, but the genome integrity of iPSCs is critically important. Here, we demonstrate that non-homologous end joining (NHEJ), rather than homologous recombination (HR), is less efficient in iPSCs from old mice than young mice. We further find that Sirt6 is downregulated in iPSCs from old mice. Sirt6 directly binds to Ku80 and facilitates the Ku80/DNA-PKcs interaction, thus promoting DNA-PKcs phosphorylation at residue S2056, leading to efficient NHEJ. Rescue experiments show that introducing a combination of Sirt6 and the Yamanaka factors during reprogramming significantly promotes DNA double-strand break (DSB) repair by activating NHEJ in iPSCs derived from old mice. Thus, our study suggests a strategy to improve the quality of iPSCs derived from old donors by activating NHEJ and stabilizing the genome.
Publication date: 21 March 2017
Source:Cell Reports, Volume 18, Issue 12
Author(s): Amrita M. Nargund, Can G. Pham, Yiyu Dong, Patricia I. Wang, Hatice U. Osmangeyoglu, Yuchen Xie, Omer Aras, Song Han, Toshinao Oyama, Shugaku Takeda, Chelsea E. Ray, Zhenghong Dong, Mathieu Berge, A. Ari Hakimi, Sebastien Monette, Carl L. Lekaye, Jason A. Koutcher, Christina S. Leslie, Chad J. Creighton, Nils Weinhold, William Lee, Satish K. Tickoo, Zhong Wang, Emily H. Cheng, James J. Hsieh
PBRM1 is the second most commonly mutated gene after VHL in clear cell renal cell carcinoma (ccRCC). However, the biological consequences of PBRM1 mutations for kidney tumorigenesis are unknown. Here, we find that kidney-specific deletion of Vhl and Pbrm1, but not either gene alone, results in bilateral, multifocal, transplantable clear cell kidney cancers. PBRM1 loss amplified the transcriptional outputs of HIF1 and STAT3 incurred by Vhl deficiency. Analysis of mouse and human ccRCC revealed convergence on mTOR activation, representing the third driver event after genetic inactivation of VHL and PBRM1. Our study reports a physiological preclinical ccRCC mouse model that recapitulates somatic mutations in human ccRCC and provides mechanistic and therapeutic insights into PBRM1 mutated subtypes of human ccRCC.
Publication date: 21 March 2017
Source:Cell Reports, Volume 18, Issue 12
Author(s): BaoHan T. Vo, Chunliang Li, Marc A. Morgan, Ilan Theurillat, David Finkelstein, Shaela Wright, Judith Hyle, Stephanie M.C. Smith, Yiping Fan, Yong-Dong Wang, Gang Wu, Brent A. Orr, Paul A. Northcott, Ali Shilatifard, Charles J. Sherr, Martine F. Roussel
The most aggressive of four medulloblastoma (MB) subgroups are cMyc-driven group 3 (G3) tumors, some of which overexpress EZH2, the histone H3K27 mono-, di-, and trimethylase of polycomb-repressive complex 2. Ezh2 has a context-dependent role in different cancers as an oncogene or tumor suppressor and retards tumor progression in a mouse model of G3 MB. Engineered deletions of Ezh2 in G3 MBs by gene editing nucleases accelerated tumorigenesis, whereas Ezh2 re-expression reversed attendant histone modifications and slowed tumor progression. Candidate oncogenic drivers suppressed by Ezh2 included Gfi1, a proto-oncogene frequently activated in human G3 MBs. Gfi1 disruption antagonized the tumor-promoting effects of Ezh2 loss; conversely, Gfi1 overexpression collaborated with Myc to bypass effects of Trp53 inactivation in driving MB progression in primary cerebellar neuronal progenitors. Although negative regulation of Gfi1 by Ezh2 may restrain MB development, Gfi1 activation can bypass these effects.
Publication date: 21 March 2017
Source:Cell Reports, Volume 18, Issue 12
Author(s): Yue Huang, Olivia I. Koues, Jiang-yang Zhao, Regina Liu, Sarah C. Pyfrom, Jacqueline E. Payton, Eugene M. Oltz
Alterations in distal regulatory elements that control gene expression underlie many diseases, including cancer. Epigenomic analyses of normal and diseased cells have produced correlative predictions for connections between dysregulated enhancers and target genes involved in pathogenesis. However, with few exceptions, these predicted cis-regulatory circuits remain untested. Here, we dissect cis-regulatory circuits that lead to overexpression of NEK6, a mitosis-associated kinase, in human B cell lymphoma. We find that only a minor subset of predicted enhancers is required for NEK6 expression. Indeed, an annotated super-enhancer is dispensable for NEK6 overexpression and for maintaining the architecture of a B cell-specific regulatory hub. A CTCF cluster serves as a chromatin and architectural boundary to block communication of the NEK6 regulatory hub with neighboring genes. Our findings emphasize that validation of predicted cis-regulatory circuits and super-enhancers is needed to prioritize transcriptional control elements as therapeutic targets.
Publication date: 21 March 2017
Source:Cell Reports, Volume 18, Issue 12
Author(s): Xiaoling Zhang, Zhiwei Dong, Cheng Zhang, Choong Yong Ung, Shuning He, Ting Tao, Andre M. Oliveira, Alexander Meves, Baoan Ji, A. Thomas Look, Hu Li, Benjamin G. Neel, Shizhen Zhu
Growing evidence suggests a major role for Src-homology-2-domain-containing phosphatase 2 (SHP2/PTPN11) in MYCN-driven high-risk neuroblastoma, although biologic confirmation and a plausible mechanism for this contribution are lacking. Using a zebrafish model of MYCN-overexpressing neuroblastoma, we demonstrate that mutant ptpn11 expression in the adrenal gland analog of MYCN transgenic fish promotes the proliferation of hyperplastic neuroblasts, accelerates neuroblastomagenesis, and increases tumor penetrance. We identify a similar mechanism in tumors with wild-type ptpn11 and dysregulated Gab2, which encodes a Shp2 activator that is overexpressed in human neuroblastomas. In MYCN transgenic fish, Gab2 overexpression activated the Shp2-Ras-Erk pathway, enhanced neuroblastoma induction, and increased tumor penetrance. We conclude that MYCN cooperates with either GAB2-activated or mutant SHP2 in human neuroblastomagenesis. Our findings further suggest that combined inhibition of MYCN and the SHP2-RAS-ERK pathway could provide effective targeted therapy for high-risk neuroblastoma patients with MYCN amplification and aberrant SHP2 activation.
Publication date: 21 March 2017
Source:Cell Reports, Volume 18, Issue 12
Author(s): Lisa L. Hall, Meg Byron, Dawn M. Carone, Troy W. Whitfield, Gayle P. Pouliot, Andrew Fischer, Peter Jones, Jeanne B. Lawrence
This study reveals that high-copy satellite II (HSATII) sequences in the human genome can bind and impact distribution of chromatin regulatory proteins and that this goes awry in cancer. In many cancers, master regulatory proteins form two types of cancer-specific nuclear bodies, caused by locus-specific deregulation of HSATII. DNA demethylation at the 1q12 mega-satellite, common in cancer, causes PRC1 aggregation into prominent Cancer-Associated Polycomb (CAP) bodies. These loci remain silent, whereas HSATII loci with reduced PRC1 become derepressed, reflecting imbalanced distribution of UbH2A on these and other PcG-regulated loci. Large nuclear foci of HSATII RNA form and sequester copious MeCP2 into Cancer-Associated Satellite Transcript (CAST) bodies. Hence, HSATII DNA and RNA have an exceptional capacity to act as molecular sponges and sequester chromatin regulatory proteins into abnormal nuclear bodies in cancer. The compartmentalization of regulatory proteins within nuclear structure, triggered by demethylation of "junk" repeats, raises the possibility that this contributes to further compromise of the epigenome and neoplastic progression.
Publication date: 21 March 2017
Source:Cell Reports, Volume 18, Issue 12
Author(s): Christopher D. Green, Yi Huang, Xiaoyang Dou, Liu Yang, Yong Liu, Jing-Dong J. Han
Dietary interventions dramatically affect metabolic disease and lifespan in various aging models. Here, we profiled liver microRNA (miRNA), coding, and long non-coding RNA (lncRNA) expression by high-throughput deep sequencing in mice across multiple energy intake and expenditure interventions. Strikingly, three dietary intervention network design patterns were uncovered: (1) lifespan-extending interventions largely repressed the expression of miRNAs, lncRNAs, and transposable elements; (2) protein-coding mRNAs with expression positively correlated with long lifespan are highly targeted by miRNAs; and (3) miRNA-targeting interactions mainly target chromatin-related functions. We experimentally validated miR-34a, miR-107, and miR-212-3p targeting of the chromatin remodeler Chd1 and further demonstrate that Chd1 knockdown mimics high-fat diet and aging-induced gene expression changes and activation of transposons. Our findings demonstrate lifespan-extending diets repress miRNA-chromatin remodeler interactions and safeguard against deregulated transcription induced by aging and lifespan shortening diets, events linked by microRNA, chromatin, and ncRNA crosstalk.
Publication date: 21 March 2017
Source:Cell Reports, Volume 18, Issue 12
Author(s): Philip K. Shiu, Craig P. Hunter
RNAi has enabled researchers to study the function of many genes. However, it is not understood why some RNAi experiments succeed while others do not. Here, we show in C. elegans that pharyngeal muscle is resistant to RNAi when initially exposed to double-stranded RNA (dsRNA) by feeding but sensitive to RNAi in the next generation. Investigating this observation, we find that pharyngeal muscle cells as well as vulval muscle cells require nuclear rather than cytoplasmic RNAi. Further, we find in these cell types that nuclear RNAi silencing is most efficiently triggered during early development, defining a critical period for initiating nuclear RNAi. Finally, using heat-shock-induced dsRNA expression, we show that synMuv B class mutants act in part to extend this critical window. The synMuv-B-dependent early-development-associated critical period for initiating nuclear RNAi suggests that mechanisms that restrict developmental plasticity may also restrict the initiation of nuclear RNAi.
Publication date: 21 March 2017
Source:Cell Reports, Volume 18, Issue 12
Author(s): Daniel Benhalevy, Sanjay K. Gupta, Charles H. Danan, Suman Ghosal, Hong-Wei Sun, Hinke G. Kazemier, Katrin Paeschke, Markus Hafner, Stefan A. Juranek
The CCHC-type zinc finger nucleic acid-binding protein (CNBP/ZNF9) is conserved in eukaryotes and is essential for embryonic development in mammals. It has been implicated in transcriptional, as well as post-transcriptional, gene regulation; however, its nucleic acid ligands and molecular function remain elusive. Here, we use multiple systems-wide approaches to identify CNBP targets and function. We used photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) to identify 8,420 CNBP binding sites on 4,178 mRNAs. CNBP preferentially bound G-rich elements in the target mRNA coding sequences, most of which were previously found to form G-quadruplex and other stable structures in vitro. Functional analyses, including RNA sequencing, ribosome profiling, and quantitative mass spectrometry, revealed that CNBP binding did not influence target mRNA abundance but rather increased their translational efficiency. Considering that CNBP binding prevented G-quadruplex structure formation in vitro, we hypothesize that CNBP is supporting translation by resolving stable structures on mRNAs.
Publication date: 21 March 2017
Source:Cell Reports, Volume 18, Issue 12
Author(s): Tomoko Yamazaki, Ani Nalbandian, Yutaka Uchida, Wenling Li, Thomas D. Arnold, Yoshiaki Kubota, Seiji Yamamoto, Masatsugu Ema, Yoh-suke Mukouyama
Mural cells (pericytes and vascular smooth muscle cells) are essential for the regulation of vascular networks and maintenance of vascular integrity, but their origins are diverse in different tissues and not known in the organs that arise from the ectoderm, such as skin. Here, we show that tissue-localized myeloid progenitors contribute to pericyte development in embryonic skin vasculature. A series of in vivo fate-mapping experiments indicates that tissue myeloid progenitors differentiate into pericytes. Furthermore, depletion of tissue myeloid cells and their progenitors in PU.1 (also known as Spi1) mutants results in defective pericyte development. Fluorescence-activated cell sorting (FACS)-isolated myeloid cells and their progenitors from embryonic skin differentiate into pericytes in culture. At the molecular level, transforming growth factor-β (TGF-β) induces pericyte differentiation in culture. Furthermore, type 2 TGF-β receptor (Tgfbr2) mutants exhibit deficient pericyte development in skin vasculature. Combined, these data suggest that pericytes differentiate from tissue myeloid progenitors in the skin vasculature through TGF-β signaling.
Publication date: 21 March 2017
Source:Cell Reports, Volume 18, Issue 12
Author(s): Katrien Van der Borght, Charlotte L. Scott, Veronika Nindl, Ann Bouché, Liesbet Martens, Dorine Sichien, Justine Van Moorleghem, Manon Vanheerswynghels, Sofie De Prijck, Yvan Saeys, Burkhard Ludewig, Thierry Gillebert, Martin Guilliams, Peter Carmeliet, Bart N. Lambrecht
Peripheral tolerance is crucial for avoiding activation of self-reactive T cells to tissue-restricted antigens. Sterile tissue injury can break peripheral tolerance, but it is unclear how autoreactive T cells get activated in response to self. An example of a sterile injury is myocardial infarction (MI). We hypothesized that tissue necrosis is an activator of dendritic cells (DCs), which control tolerance to self-antigens. DC subsets of a murine healthy heart consisted of IRF8-dependent conventional (c)DC1, IRF4-dependent cDC2, and monocyte-derived DCs. In steady state, cardiac self-antigen α-myosin was presented in the heart-draining mediastinal lymph node (mLN) by cDC1s, driving the proliferation of antigen-specific CD4+ TCR-M T cells and their differentiation into regulatory cells (Tregs). Following MI, all DC subsets infiltrated the heart, whereas only cDCs migrated to the mLN. Here, cDC2s induced TCR-M proliferation and differentiation into interleukin-(IL)-17/interferon-(IFN)γ-producing effector cells. Thus, cardiac-specific autoreactive T cells get activated by mature DCs following myocardial infarction.
Publication date: 21 March 2017
Source:Cell Reports, Volume 18, Issue 12
Author(s): Li Zhou, Ming-Zhe Liu, Qing Li, Juan Deng, Di Mu, Yan-Gang Sun
Serotonergic neurons play key roles in various biological processes. However, circuit mechanisms underlying tight control of serotonergic neurons remain largely unknown. Here, we systematically investigated the organization of long-range synaptic inputs to serotonergic neurons and GABAergic neurons in the dorsal raphe nucleus (DRN) of mice with a combination of viral tracing, slice electrophysiological, and optogenetic techniques. We found that DRN serotonergic neurons and GABAergic neurons receive largely comparable synaptic inputs from six major upstream brain areas. Upon further analysis of the fine functional circuit structures, we found both bilateral and ipsilateral patterns of topographic connectivity in the DRN for the axons from different inputs. Moreover, the upstream brain areas were found to bidirectionally control the activity of DRN serotonergic neurons by recruiting feedforward inhibition or via a push-pull mechanism. Our study provides a framework for further deciphering the functional roles of long-range circuits controlling the activity of serotonergic neurons in the DRN.
Publication date: Available online 18 March 2017
Source:Colloids and Surfaces B: Biointerfaces
Author(s): Shiyan Fu, Shu Wang, Xiaodi Zhang, Anhui Qi, Zhirong Liu, Xin Yu, Chuanfang Chen, Linlin Li
Ferromagnetic nanoparticles (Fe3O4 NPs) have been proven to have the intrinsic peroxidase-like activity. This property has been used for analyte detection, tumor tissue visualization, and cancer therapy, etc. However, the effect of particle structure and morphology on its peroxidase-like activity has been rarely reported. In this work, we fabricated Fe3O4 nanoparticles with different structures (nanoclusters, nanoflowers, and nanodiamonds) by facilely tuning the pH values in the hydrothermal reaction. Their in vitro peroxidase-like activity was evaluated via chromogenic reaction of 3,3′,5,5′-tetramethylbenzidine (TMB) by the reduction of H2O2 to H2O. It was found the nanostructures had a great influence on their peroxidase-like activity, following the order of nanoclusters > nanoflowers > nanodiamonds. With this activity, the peroxidase-like activity of Fe3O4 NPs was used for cancer therapy with the addition of low-concentration H2O2. The cancer cell-killing activity was due to the intracellular generated reactive oxygen species (ROS) after endocytosis of Fe3O4 NPs into the Hela cells. It was interesting that the cell killing ability of these three kinds of Fe3O4 NPs was not consistent with the in vitro enzyme-like activity. It was deduced that the cell endocytosis of the nanoparticles along with their enzyme-like activity co-determined their cancer cell-killing performance.
Publication date: 2017
Source:Advances in Imaging and Electron Physics, Volume 199
http://ift.tt/2mrcg0M
Publication date: Available online 21 March 2017
Source:Free Radical Biology and Medicine
Author(s): Charles Badu-Boateng, Sofia Pardalaki, Claude Wolf, Sonia Lajnef, Fabienne Peyrot, Richard J. Naftalin
Ascorbate mobilizes iron from equine spleen ferritin by two separate processes. Ascorbate alone mobilizes ferritin iron with an apparent Km (ascorbate) ≈ 1.5mM. Labile iron > 2μM, complexed with citrate (10mM), synergises ascorbate-dependent iron mobilization by decreasing the apparent Km (ascorbate) to ≈ 270μM and raising maximal mobilization rate by ≈ 5-fold. Catalase reduces the apparent Km(ascorbate) for both ascorbate and ascorbate + iron dependent mobilization by ≈ 80%. Iron mobilization by ascorbate alone has a higher activation energy (Ea = 45.0 ± 5.5kJ/mole) than when mediated by ascorbate with labile iron (10μM) (Ea = 13.7 ± 2.2kJ/mole); also mobilization by iron-ascorbate has a three-fold higher pH sensitivity (pH range 6.0–8.0) than with ascorbate alone. Hydrogen peroxide inhibits ascorbate's iron mobilizing action.EPR and autochemiluminescence studies show that ascorbate and labile iron within ferritin enhances radical formation, whereas ascorbate alone produces negligible radicals. These findings suggest that iron catalysed single electron transfer reactions from ascorbate, involving ascorbate or superoxide and possibly ferroxidase tyrosine radicals, accelerate iron mobilization from the ferroxidase centre more than EPR silent, bi-dentate two-electron transfers. These differing modes of electron transference from ascorbate mirror the known mono and bidentate oxidation reactions of dioxygen and hydrogen peroxide with di-ferrous iron at the ferroxidase centre. This study implies that labile iron, at physiological pH, complexed with citrate, synergises iron mobilization from ferritin by ascorbate (50–4000μM). This autocatalytic process can exacerbate oxidative stress in ferritin-containing inflamed tissue.
Publication date: Available online 21 March 2017
Source:Free Radical Biology and Medicine
Author(s): Katrin Schröder, Norbert Weissmann, Ralf P. Brandes
NADPH oxidases of the Nox family are important enzymatic sources of reactive oxygen species (ROS) in the cardiovascular system. Of the 7 members of the Nox family, at least three depend for their activation on specific cytosolic proteins. These are p47phox and its homologue NoxO1 and p67phox and its homologue NoxA1. Also the Rho-GTPase Rac is important but as this protein has many additional functions, it will not be covered here. The Nox1 enzyme is preferentially activated by the combination of NoxO1 with NoxA1, whereas Nox2 gains highest activity with p47phox together with p67phox. As p47phox, different to NoxO1 contains an auto inhibitory region it has to be phosphorylated prior to complex formation. In the cardio-vascular system, all cytosolic Nox proteins are expressed but the evidence for their contribution to ROS production is not well established. Most data have been collected for p47phox, whereas NoxA1 has basically not yet been studied. In this article the specific aspects of cytosolic Nox proteins in the cardiovascular system with respect to Nox activation, their expression and their importance will be reviewed. Finally, it will be discussed whether cytosolic Nox proteins are suitable pharmacological targets to tamper with vascular ROS production.
Publication date: June 2017
Source:Data in Brief, Volume 12
Author(s): Alice Conigliaro, Viviana Costa, Rosario Amato, Carmine Mancone
Here, we presented new original data on the effects of iron depletion on the circulating lipid profile in B6HCV mice, a murine model of HCV-related dyslipidemia. Male adult B6HCV mice were subjected to non-invasive iron depletion by low iron diet. Serum iron concentration was assessed for evaluating the effects of the dietary iron depletion. Concentrations of circulating triglycerides, total cholesterol, Low Density Lipoproteins (LDLs), High Density Lipoproteins (HDLs) were analyzed and reported by using stacked line charts. The present data indicated that low serum iron concentration is associated to i) lower serum triglycerides concentrations and ii) increased circulating LDLs. The presented original data have not been published elsewhere.
http://ift.tt/2nzAlCk
Publication date: June 2017
Source:Data in Brief, Volume 12
Author(s): Qi Lu, Guillermo A. Narsilio, Gregorius Riyan Aditya, Ian W. Johnston
The data reported in this article presents actual installation costs and performance data for a selection of residential Ground Source Heat Pump (GSHP) systems in Melbourne, Australia. The installation cost data includes five main cost components: ground loop installation, head pipe installation, heat pump, mechanical room installation, and fittings. The performance data presented here includes timestamp, air temperature and thermal loading. A more comprehensive analysis of this data may be obtained from the article entitled "Economic analysis of vertical ground source heat pump systems in Melbourne" (Q. Lu, G.A. Narsilio, G.R. Aditya, I.W. Johnston, 2017) [1].
http://ift.tt/2mOnrvw
Publication date: June 2017
Source:Data in Brief, Volume 12
Author(s): Voin Petrovic, Camilla Olaisen, Animesh Sharma, Anala Nepal, Steffen Bugge, Eirik Sundby, Bård Helge Hoff, Geir Slupphaug, Marit Otterlei
Cell extracts from A549, H460, and U2OS human cancer cell lines treated with cisplatin and docetaxel were analyzed by mass spectrometry (MS) proteomic analysis. The extracts were enriched for cellular signaling proteins using a mix of three different immobilized kinase inhibitors (Purvalanol B, Bisindolylmaleimide X, and (R)-3-(4-((1-Phenylethyl)amino)thieno[2,3-d]pyrimidin-6-yl)benzoic acid (SB6-060-05)) on sepharose bead columns. Raw data is deposited in the PRIDE database [1], project number PXD005286. Data presented (Table 1) shows changes relative to untreated control for each biological replicate for the three cell lines.
http://ift.tt/2nzZ6hs
This study analyzed the kinetics of in vivo micronucleus induction in normoblasts by determining the kinetics of difluorodeoxycytidine (dFdC)-induced micronucleated polychromatic erythrocytes (MN-PCEs) in the peripheral blood of mice. The kinetic indexes of MN-PCE induction of dFdC were correlated with the previously reported mechanisms DNA damage induction by this compound. In general, this study aimed to establish an in vivo approach for discerning the processes underlying micronucleus induction by antineoplastic agents or mutagens in general.
The frequencies of PCEs and MN-PCEs in the peripheral blood of mice were determined prior to treatment and after treatment using dFdC at doses of 95, 190, or 380 µmol/kg at 8 h intervals throughout a 72 h post-treatment.
The area beneath the curve (ABC) for MN-PCE induction as a function of time, which is an index of the total effect, indicated that the dose response was directly proportional and that the effect of dFdC on micronucleus induction was reduced compared with that of aneuploidogens and monofunctional and bifunctional alkylating agents but increased compared with that of promutagens, which is consistent with our previous results. The ABC showed a single peak with a small broadness index, which indicates that dFdC has a single mechanism or concomitant mechanisms for inducing DNA breaks. The time of the relative maximal induction (T rmi) indicated that dFdC requires more time to achieve MN-PCE induction compared with aneugens and monofunctional and bifunctional alkylating agents, although it requires a similar time to achieve MN-PCE induction as azacytidine, which is consistent with evidence showing that both agents must be incorporated into DNA for their action to be realized. The timing of maximal cytotoxicity observed with the lowest dFdC dose was correlated with the timing of the main genotoxic effect. However, early and late cytotoxic effects were detected, and these effects were independent of the genotoxic response.
A correlation analysis indicated that dFdC appears to induce MN-PCEs through only one mechanism or mechanisms that occur concomitantly, which could be explained by the previously reported concurrent inhibitory effects of dFdC on DNA polymerase alpha, polymerase epsilon, and/or topoisomerase. The timing of maximal cytotoxicity was correlated with the timing of maximal genotoxicity; however, an early cytotoxic effect that appeared to occur prior to the incorporation of dFdC into DNA was likely related to a previously reported inhibitory effect of dFdC on thymidylate synthase and/or ribonucleotide reductase.
Publication date: 15 August 2017
Source:Biosensors and Bioelectronics, Volume 94
Author(s): Fangyuan Zhao, Felipe Conzuelo, Volker Hartmann, Huaiguang Li, Stefanie Stapf, Marc M. Nowaczyk, Matthias Rögner, Nicolas Plumeré, Wolfgang Lubitz, Wolfgang Schuhmann
The development of a versatile microbiosensor for hydrogen detection is reported. Carbon-based microelectrodes were modified with a [NiFe]-hydrogenase embedded in a viologen-modified redox hydrogel for the fabrication of a sensitive hydrogen biosensor By integrating the microbiosensor in a scanning photoelectrochemical microscope, it was capable of serving simultaneously as local light source to initiate photo(bio)electrochemical reactions while acting as sensitive biosensor for the detection of hydrogen. A hydrogen evolution biocatalyst based on photosystem 1-platinum nanoparticle biocomplexes embedded into a specifically designed redox polymer was used as a model for proving the capability of the developed hydrogen biosensor for the detection of hydrogen upon localized illumination. The versatility and sensitivity of the proposed microbiosensor as probe tip allows simplification of the set-up used for the evaluation of complex electrochemical processes and the rapid investigation of local photoelectrocatalytic activity of biocatalysts towards light-induced hydrogen evolution.
18 new pubmed citations were retrieved for your search. Click on the search hyperlink below to display the complete search results:
These pubmed results were generated on 2017/03/21
PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.