<span class="paragraphSection"><div class="boxTitle">Abstract</div>Functional connectivity aberrancies, as measured with resting-state functional magnetic resonance imaging (rsfMRI), have been consistently observed in the brain of autism spectrum disorders (ASD) patients. However, the genetic and neurobiological underpinnings of these findings remain unclear. Homozygous mutations in <span style="font-style:italic;">contactin associated protein-like 2</span> (<span style="font-style:italic;">CNTNAP2</span>), a neurexin-related cell-adhesion protein, are strongly linked to autism and epilepsy. Here we used rsfMRI to show that homozygous mice lacking <span style="font-style:italic;">Cntnap2</span> exhibit reduced long-range and local functional connectivity in prefrontal and midline brain "connectivity hubs." Long-range rsfMRI connectivity impairments affected heteromodal cortical regions and were prominent between fronto-posterior components of the mouse default-mode network, an effect that was associated with reduced social investigation, a core "autism trait" in mice. Notably, viral tracing revealed reduced frequency of prefrontal-projecting neural clusters in the cingulate cortex of <span style="font-style:italic;">Cntnap2</span><sup>−/−</sup> mutants, suggesting a possible contribution of defective mesoscale axonal wiring to the observed functional impairments. Macroscale cortico-cortical white-matter organization appeared to be otherwise preserved in these animals. These findings reveal a key contribution of ASD-associated gene CNTNAP2 in modulating macroscale functional connectivity, and suggest that homozygous loss-of-function mutations in this gene may predispose to neurodevelopmental disorders and autism through a selective dysregulation of connectivity in integrative prefrontal areas.</span>
http://ift.tt/2lxFRkR
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
Ετικέτες
Πέμπτη 9 Φεβρουαρίου 2017
Homozygous Loss of Autism-Risk Gene CNTNAP2 Results in Reduced Local and Long-Range Prefrontal Functional Connectivity
Body Topography Parcellates Human Sensory and Motor Cortex
<span class="paragraphSection"><div class="boxTitle">Abstract</div>The cytoarchitectonic map as proposed by Brodmann currently dominates models of human sensorimotor cortical structure, function, and plasticity. According to this model, primary motor cortex, area 4, and primary somatosensory cortex, area 3b, are homogenous areas, with the major division lying between the two. Accumulating empirical and theoretical evidence, however, has begun to question the validity of the Brodmann map for various cortical areas. Here, we combined in vivo cortical myelin mapping with functional connectivity analyses and topographic mapping techniques to reassess the validity of the Brodmann map in human primary sensorimotor cortex. We provide empirical evidence that area 4 and area 3b are not homogenous, but are subdivided into distinct cortical fields, each representing a major body part (the hand and the face). Myelin reductions at the hand–face borders are cortical layer-specific, and coincide with intrinsic functional connectivity borders as defined using large-scale resting state analyses. Our data extend the Brodmann model in human sensorimotor cortex and suggest that body parts are an important organizing principle, similar to the distinction between sensory and motor processing.</span>
http://ift.tt/2lqyhvw
The Relation Between Long-Term Synaptic Plasticity at Glutamatergic Synapses in the Amygdala and Fear Learning in Adult Heterozygous BDNF-Knockout Mice
<span class="paragraphSection"><div class="boxTitle">Abstract</div>Brain-derived neurotrophic factor (BDNF) heterozygous knockout mice (BDNF<sup>+/−</sup> mice) show fear learning deficits from 3 months of age onwards. Here, we addressed the question how this learning deficit correlates with altered long-term potentiation (LTP) in the cortical synaptic input to the lateral amygdala (LA) and at downstream intra-amygdala synapses in BDNF<sup>+/-</sup> mice. Our results reveal that the fear learning deficit in BDNF<sup>+/−</sup> mice was not paralleled by a loss of LTP, neither at cortical inputs to the LA nor at downstream intra-amygdala glutamatergic synapses. As we did observe early fear memory (30 min after training) in BDNF<sup>+/−</sup> mice while long-term memory (24 h post-training) was absent, the stable LTP in cortico-LA and downstream synapses is in line with the intact acquisition of fear memories. Ex vivo recordings in acute slices of fear-conditioned wildtype (WT) mice revealed that fear learning induces long-lasting changes at cortico-LA synapses that occluded generation of LTP 4 and 24 h after training. Overall, our data show that the intact LTP in the tested amygdala circuits is consistent with intact acquisition of fear memories in both WT and BDNF<sup>+/−</sup> mice. In addition, the lack of learning-induced long-term changes at cortico-LA synapses in BDNF<sup>+/−</sup> mice parallels the observed deficit in fear memory consolidation.</span>
http://ift.tt/2lxMcwE
Cognitive Enhancement Induced by Anodal tDCS Drives Circuit-Specific Cortical Plasticity
<span class="paragraphSection"><div class="boxTitle">Abstract</div>Increasing evidence shows that anodal transcranial direct current stimulation (tDCS) enhances cognitive performance in healthy and clinical population. Such facilitation is supposed to be linked to plastic changes at relevant cortical sites. However, direct electrophysiological evidence for this causal relationship is still missing. Here, we show that cognitive enhancement occurring in healthy human subjects during anodal tDCS is affected by ongoing brain activity, increasing cortical excitability of task-related brain networks only, as directly measured by Transcranial Magnetic Stimulation combined with electroencephalography (TMS-EEG). Specifically, TMS-EEG recordings were performed before and after anodal tDCS coupled with a verbal fluency task. To control for effects of tDCS protocol and TMS target location, 3 conditions were assessed: anodal/sham tDCS with TMS over left premotor cortex, anodal tDCS with TMS over left posterior parietal cortex. Modulation of cortical excitability occurred only at left Brodmann's areas 6, 44, and 45, a key network for language production, after anodal tDCS and TMS over the premotor cortex, and was positively correlated to the degree of cognitive enhancement. Our results suggest that anodal tDCS specifically affects task-related functional networks active while delivering stimulation, and this boost of specific cortical circuits is correlated to the observed cognitive enhancement.</span>
http://ift.tt/2lqC6ks
A Systematic Relationship Between Functional Connectivity and Intracortical Myelin in the Human Cerebral Cortex
<span class="paragraphSection"><div class="boxTitle">Abstract</div>Research in the macaque monkey suggests that cortical areas with similar microstructure are more likely to be connected. Here, we examine this link in the human cerebral cortex using 2 magnetic resonance imaging (MRI) measures: quantitative <span style="font-style:italic;">T</span><sub>1</sub> maps, which are sensitive to intracortical myelin content and provide an in vivo proxy for cortical microstructure, and resting-state functional connectivity. Using ultrahigh-resolution MRI at 7 T and dedicated image processing tools, we demonstrate a systematic relationship between <span style="font-style:italic;">T</span><sub>1</sub>-based intracortical myelin content and functional connectivity. This effect is independent of the proximity of areas. We employ nonlinear dimensionality reduction to characterize connectivity components and identify specific aspects of functional connectivity that are linked to myelin content. Our results reveal a consistent spatial pattern throughout different analytic approaches. While functional connectivity and myelin content are closely linked in unimodal areas, the correspondence is lower in transmodal areas, especially in posteromedial cortex and the angular gyrus. Our findings are in agreement with comprehensive reports linking histologically assessed microstructure and connectivity in different mammalian species and extend them to the human cerebral cortex in vivo.</span>
http://ift.tt/2lxFQgS
Medial Frontal Circuit Dynamics Represents Probabilistic Choices for Unfamiliar Sensory Experience
<span class="paragraphSection"><div class="boxTitle">Abstract</div>Neurons in medial frontal cortex (MFC) receive sensory signals that are crucial for decision-making behavior. While decision-making is easy for familiar sensory signals, it becomes more elaborative when sensory signals are less familiar to animals. It remains unclear how the population of neurons enables the coordinate transformation of such a sensory input into ambiguous choice responses. Furthermore, whether and how cortical oscillations temporally coordinate neuronal firing during this transformation has not been extensively studied. Here, we recorded neuronal population responses to familiar or unfamiliar auditory cues in rat MFC and computed their probabilistic evolution. Population responses to familiar sounds organize into neuronal trajectories containing multiplexed sensory, motor, and choice information. Unfamiliar sounds, in contrast, evoke trajectories that travel under the guidance of familiar paths and eventually diverge to unique decision states. Local field potentials exhibited beta- (15–20 Hz) and gamma-band (50–60 Hz) oscillations to which neuronal firing showed modest phase locking. Interestingly, gamma oscillation, but not beta oscillation, increased its power abruptly at some timepoint by which neural trajectories for different choices were near maximally separated. Our results emphasize the importance of the evolution of neural trajectories in rapid probabilistic decisions that utilize unfamiliar sensory information.</span>
http://ift.tt/2lqz1kv
β-Catenin in the Adult Visual Cortex Regulates NMDA-Receptor Function and Visual Responses
<span class="paragraphSection"><div class="boxTitle">Abstract</div>The formation, plasticity and maintenance of synaptic connections is regulated by molecular and electrical signals. β-Catenin is an important protein in these events and regulates cadherin-mediated cell adhesion and the recruitment of pre- and postsynaptic proteins in an activity-dependent fashion. Mutations in the β-catenin gene can cause cognitive disability and autism, with life-long consequences. Understanding its synaptic function may thus be relevant for the treatment of these disorders. So far, β-catenin's function has been studied predominantly in cell culture and during development but knowledge on its function in adulthood is limited. Here, we show that ablating β-catenin in excitatory neurons of the adult visual cortex does not cause the same synaptic deficits previously observed during development. Instead, it reduces NMDA-receptor currents and impairs visual processing. We conclude that β-catenin remains important for adult cortical function but through different mechanisms than during development.</span>
http://ift.tt/2lxPrV0
Class 3 semaphorins are transcriptionally regulated by 1,25(OH)2D3 in osteoblasts
Publication date: Available online 9 February 2017
Source:The Journal of Steroid Biochemistry and Molecular Biology
Author(s): Jussi Ryynänen, Carsten Kriebitzsch, Mark B. Meyer, Iris Janssens, J. Wesley Pike, Lieve Verlinden, Annemieke Verstuyf
The vitamin D endocrine system is essential for calcium metabolism and skeletal integrity. 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] regulates bone mineral homeostasis and acts directly on osteoblasts. In the present study we characterized the transcriptional regulation of the class 3 semaphorin (Sema3) gene family by 1,25(OH)2D3 in osteoblastic cells. Class 3 semaphorins are secreted proteins that regulate cell growth, morphology and migration, and were recently shown to be involved in bone homeostasis. In ST2, MC3T3-E1 and primary calvarial osteoblast cell cultures we found that all members of the Sema3 gene family were expressed, and that Sema3e and Sema3f were the most strongly induced 1,25(OH)2D3 target genes among the studied cell types. In addition, transcription of Sema3b and Sema3c was upregulated, whereas Sema3d and Sema3g was downregulated by 1,25(OH)2D3 in different osteoblastic cells. Chromatin immunoprecipitation analysis linked to DNA sequencing (ChIP-seq analysis) revealed the presence of the vitamin D receptor at multiple genomic loci in the proximity of Sema3 genes, demonstrating that the genes are primary 1,25(OH)2D3 targets. Furthermore, we showed that recombinant SEMA3E and SEMA3F protein were able to inhibit osteoblast proliferation. However, recombinant SEMA3s did not affect ST2 cell migration. The expression of class 3 semaphorins in osteoblasts together with their regulation by 1,25(OH)2D3 suggests that these genes, involved in the regulation of bone homeostasis, are additional mediators for 1,25(OH)2D3 signaling in osteoblasts.
http://ift.tt/2kyEgg4
Genetics in OtolRhinoLaryngology
Anapafseos 5 . Agios Nikolaos
Crete.Greece.72100
2841026182
-
Summary Insulinomas are rare neuroendocrine tumours that classically present with fasting hypoglycaemia. This case report discusses an un...
-
The online platform for Taylor & Francis Online content New for Canadian Journal of Remote Sen...