Publication date: May–June 2017
Source:Clinical Imaging, Volume 43
Author(s): Pratik A. Shukla, Adam Zybulewski, Marcin K. Kolber, Erik Berkowitz, James Silberzweig, Morris Hayim
PurposeTo evaluate the negative predictive power of computed tomography angiography (CTA) for the identification of obscure acute gastrointestinal (GI) bleeding (GI bleeding not visualized/treated by endoscopy) on subsequent mesenteric angiography (MA) with the intention to treat.Materials and methodsA retrospective chart review of patients was performed who underwent mesenteric angiography for the evaluation/treatment of acute GI bleeding between November 2012 and July 2016. Patients with negative CTA examinations that proceeded to MA were identified. Negative predictive value (NPV) was calculated.Results20 patients (14 male, 6 female; average age: 73.1±12.8years) underwent 20 negative CTA examinations for the evaluation and treatment of GI bleeding followed by mesenteric angiography. Eighteen of 20 patients had negative subsequent MA (negative predictive value, NPV=90%). Both false negative cases were upper GI bleed (vs 0 lower GI bleed); this difference was significant (p<0.05).ConclusionsThe high NPV of CTA for the evaluation of GI bleeding suggests utility for excluding patients that are unlikely to benefit from MA and subsequent endovascular therapy. CTA may be considered for the first line diagnostic study for the evaluation of obscure GI bleeding.
http://ift.tt/2mQM7YU
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
Ετικέτες
Δευτέρα 6 Μαρτίου 2017
No catheter angiography is needed in patients with an obscure acute gastrointestinal bleed and negative CTA
Fluorocholine PET/CT predicts skeletal progression, skeletal event and cancer specific survival in patients with biochemical relapse for prostate cancer
Publication date: May–June 2017
Source:Clinical Imaging, Volume 43
Author(s): Fabio Zattoni, Emanuela Agostini, Francesco Cattaneo, Marco Maruzzo, Umberto Basso, Filiberto Zattoni, Laura Evangelista
PurposeThe aim of our study is to evaluate the prognostic impact of 18F-Choline (FCh) positron emission tomography (PET)/computed tomography (CT), CT alone and methylene diphophonate bone scan (MDP-BS) in prostate cancer (PCa) patients with biochemical relapse.MethodsWe retrospectively selected 58 patients who underwent, between June 2010 and February 2013, both FCh-PET/CT and MDP-BS within a maximum time interval of 5months. All patients had a biochemical PCa recurrence after radical prostatectomy and/or radiation therapy. Two independent observers reviewed FCh-PET/CT and MDP-BS images. The bone window of CT portion from FCh-PET/CT was separately assessed. Time to progression (TTP), skeletal event free survival (SES) and cancer specific survival (CSS) were defined as the length of time between imaging and progression of disease, skeletal related events and cancer specific mortality, respectively. A patient based and a K agreement analysis was used to compare the findings of all three imaging modalities. Kaplan-Meier and log-rank analysis were computed for survival assessment. A multivariate Cox regression analysis was used to identify the independent predictors for TTP.ResultsBone metastases were detected in 22 (38%) patients at FCh-PET/CT, in 27 (47%) at MDP-BS and in 24 (41%) at CT. The agreement between FCh-PET/CT and MDP-BS, CT and MDP-BS, and FCh-PET/CT and CT were moderate/fair (respectively, k: 0.474, 0.267 and 0.424; all p<0.05). After 38months (IQR: 27–54months) of follow-up, 33 (57%) patients had a new recurrence of disease, 12 (21%) had skeletal related events and 19 (33%) died. Three subjects (5%) were lost during the observational period. At survival analyses, a worse TTP, SES and CSS were found in patients with a positive FCh-PET/CT at bone level than those with a negative scan (all p≤0.05). Conversely, any significant difference in TTP, SES and CSS was found for patients with both a positive MDP-BS and CT scan. At univariate analysis, a positive FCh-PET/CT at skeletal level was associated with all events (all p<0.05). However, only a positive FCh-PET/CT at any site was an independent prognostic variable of TTP (HR: 3.08; CI 95%: 1.85–9.05; p=0.04).ConclusionsPET/CT should be preferred to CT and BS in patients with prostate cancer with bone metastasis because it allows a better stratification of TTP, SES and CCS compared to CT and BS.
http://ift.tt/2lX3QcZ
Robust detection and segmentation of cell nuclei in biomedical images based on a computational topology framework
Publication date: Available online 6 March 2017
Source:Medical Image Analysis
Author(s): Rodrigo Rojas-Moraleda, Wei Xiong, Niels Halama, Katja Breitkopf-Heinlein, Steven Dooley, Luis Salinas, Dieter W. Heermann, Nektarios A. Valous
The segmentation of cell nuclei is an important step towards the automated analysis of histological images. The presence of a large number of nuclei in whole-slide images necessitates methods that are computationally tractable in addition to being effective. In this work, a method is developed for the robust segmentation of cell nuclei in histological images based on the principles of persistent homology. More specifically, an abstract simplicial homology approach for image segmentation is established. Essentially, the approach deals with the persistence of disconnected sets in the image, thus identifying salient regions that express patterns of persistence. By introducing an image representation based on topological features, the task of segmentation is less dependent on variations of color or texture. This results in a novel approach that generalizes well and provides stable performance. The method conceptualizes regions of interest (cell nuclei) pertinent to their topological features in a successful manner. The time cost of the proposed approach is lower-bounded by an almost linear behavior and upper-bounded by O(n2) in a worst-case scenario. Time complexity matches a quasilinear behavior which is O(n1+ɛ) for ε < 1. Images acquired from histological sections of liver tissue are used as a case study to demonstrate the effectiveness of the approach. The histological landscape consists of hepatocytes and non-parenchymal cells. The accuracy of the proposed methodology is verified against an automated workflow created by the output of a conventional filter bank (validated by experts) and the supervised training of a random forest classifier. The results are obtained on a per-object basis. The proposed workflow successfully detected both hepatocyte and non-parenchymal cell nuclei with an accuracy of 84.6%, and hepatocyte cell nuclei only with an accuracy of 86.2%. A public histological dataset with supplied ground-truth data is also used for evaluating the performance of the proposed approach (accuracy: 94.5%). Further validations are carried out with a publicly available dataset and ground-truth data from the Gland Segmentation in Colon Histology Images Challenge (GlaS) contest. The proposed method is useful for obtaining unsupervised robust initial segmentations that can be further integrated in image/data processing and management pipelines. The development of a fully automated system supporting a human expert provides tangible benefits in the context of clinical decision-making.
Graphical abstract
http://ift.tt/2n9bNw0
Impact of osteopathic therapy on pro-prioceptive balance and quality of life in patients with dizziness
Publication date: Available online 6 March 2017
Source:Journal of Bodywork and Movement Therapies
Author(s): L. Papa, A. Amodio, F. Biffi, A. Mandara
The aim of the study was to evaluate the efficacy of osteopathic manipulative treatment (OMT) in patients with Benign-Paroxysmal-Positional Vertigo (BPPV).Thirty-one patients with BPPV were randomly assigned into two groups: 19 patients received osteopathic treatments (TG) and 12 patients received sham therapy (SG), both in four weekly sessions. Before the first and the last treatment, those patients were evaluated using Dizziness Handicap Inventory (DHI) and stabilometric platform to assess lifestyle modification and balance functions.After the treatment session, TG compared to SG showed an improvement in DHI global (p=0.02), functional (p=0.03) and physical (p=0.03) components, as well as a reduction of swinging area (p=0.02). An association between swinging area and lifestyle measures (global [r=0.53; p=0.02]; functional [r=0.50; p=0.03]; physical [r=0.60; p= 0.01]) changes were found in TG.These findings suggest that OMT could be a useful approach to reduce imbalance symptoms and to improve the quality of life in patients suffering from dizziness.
http://ift.tt/2n96NqY
The Rebound Boots Change the Lower Limb Muscle Activation and Kinematics During Different Fitness Exercises
Publication date: Available online 6 March 2017
Source:Journal of Bodywork and Movement Therapies
Author(s): Mateus Rossato, Rodolfo André Dellagrana, Juliane Cristine Lopes dos Santos, Felipe P. Carpes, Rodrigo Ghedini Gheller, De Angelys de Ceselles Seixas da Silva, Ewertton de Souza Bezerra, João Otacílio Libardoni dos Santos
The purpose of this study was to evaluate electromyography and kinematic parameters of the lower limbs using rebound boots (RB) and barefoot during a gym workout. This information can be helpful to practitioners to schedule the rehabilitation and training programs. Ten women (25 ± 9 years) volunteered for the study; inclusion criteria were as follows: subjects must have experienced the RB and the analyzed exercises for at least 6 months, and have no previous injuries in the lower limbs. Seven exercises were performed for 30 seconds with the RB and subsequently on barefoot. Data from muscle activation of vastus lateralis (VL), biceps femoris (BF), lateral gastrocnemius (LG) and 2D kinematics were collected. The RB triggered postural changes, characterized by larger hip extension (4 exercises) and knee extension (6 exercises) for the landing. RB reduced activation mainly in LG (6 exercises) while no changes were observed for VL (except exercise 1) and BF. RB change kinematics and muscle activation suggesting changes in the way the legs absorb and transmit force during jumps. LG was the main muscle affected by the use of RB.
http://ift.tt/2mQJgze
Within-day and between-day reliability of thickness measurements of abdominal muscles using ultrasound during abdominal hollowing and bracing maneuvers
Publication date: Available online 6 March 2017
Source:Journal of Bodywork and Movement Therapies
Author(s): Mahnaz Aboufazeli, Nima Afshar-Mohajer
Ultrasonography imaging has been used as a non-invasive method to estimate the thickness and relative activities of the abdominal muscles in patients with lower back pain (LBP). However, the statistical reliability of US thickness measurements of abdominal muscles, including transversus abdominis (TrA), internal oblique (IO) and external oblique (EO) muscles during abdominal hollowing (AH) and abdominal bracing (AB) maneuvers has not been well-investigated. This study was performed on a total of 20 female subjects (10 with LBP and 10 without LBP) in the age range of 25 to 55 years to assess within-day and between-day reliability of the measurements. US measurements on maneuvers were repeated after two hours for the within-day reliability and after five days for the between-day reliability assessment. High intra-class correlation coefficient (ICC) values (>0.75) for within-day and between-day reliability assessments during AH maneuver were concluded. The ICC values were moderate for reliability assessment during AB. The ICC values for AH were greater than AB both for within- and between-day reliabilities. The small standard error of measurement and minimal detectable change values (0.16 to 0.78 and 0.44 to 2.15, respectively) were found for both AH and AB. We recommend real-time US imaging as a reliable way of determining the thicknesses of the TrA and IO muscle (and to some extent, EO muscle) for both healthy and LBP patients.
http://ift.tt/2n96HzC
The effects of dorso-lumbar motion restriction on EMG activity of selected muscles during running
Publication date: Available online 6 March 2017
Source:Journal of Bodywork and Movement Therapies
Author(s): Joseph J. Morley, Edward Traum
AbstractThe effects of restricting dorso-lumbar spine mobility on electromyographic activity of the erector spinae, quadriceps femoris, hamstrings and gastrocnemius muscles in runners was investigated. Thermoplastic casting material was fashioned into a rigid orthosis and used to restrict spinal motion during running. Volunteers ran on a treadmill at 2.78 m/sec, under normal conditions and with spinal motion restricted. Surface electromyographic data was collected during both sets of trials. Normal electromyographic data was also compared with previous authors to determine similarity with their electromyographic data.ResultsCasted running resulted in an increase in erector spinae (p < 0.01) and quadriceps femoris (p= 0.02) electromyography activity. Total stride time and swing time of gait were decreased during casted running (p < 0.01), indicating a shift towards shorter and thus more frequent steps to run the same distance. The normal electromyographic data collected was in agreement with previously reported work.ConclusionsNeurological control over muscle and the fascia surrounding it is responsible for joint movement and load transfer. Experimentally restricting spinal motion during running demonstrated an increase in erector spinae and rectus femoris electromyographic activity. This lends support to the hypothesis that decreased spinal mobility may be a contributing factor to overuse muscle injuries in runners.
http://ift.tt/2mQJer6
Allergens ΑΛΛΕΡΓΙΟΓΟΝΑ
ΓΥΡΗ ΠΟΩΔΩΝ ΦΥΤΩΝ (GRASS POLLENS),
G1 ΑΝΘΟΞΑΝΘΟ / ΧΛΟΗ (Anthoxanthum odoratum),
G2 ΑΓΡΙΑΔΑ (Cynodon dactylon),
G3 ΔΑΚΤΥΛΙΔΑ / ΧΛΟΗ ΚΗΠΟΥ (Dactylis glomerata),
G4 ΧΛΟΗ ΛΙΒΑΔΙΟΥ / ΦΕΣΤΟΥΚΑ (Festuca elatior),
G5 ΗΡΑ ΠΟΛΥΕΤΗΣ (Lolium perenne),
G6 ΦΛΕΟΝ ΤΟ ΛΕΙΜΩΝΙΟΝ / ΤΡΙΦΥΛΛΙ (Phleum pretense),
G7 ΚΑΛΑΜΙ (Phragmites communis),
G8 ΛΕΙΒΑΔΟΠΟΑ ΛΕΙΑ (Poa pratensis),
G9 ΑΓΡΩΣΤΗ (Agrostis stolonifera),
G10 ΒΕΛΙΟΥΡΑΣ / ΣΟΡΓΟΝ (Sorghum halepense),
G11 AΓΡΙΟΒΡΩΜΗ (Bromus inermis),
G12 ΚΑΛΛΙΕΡΓΟΥΜΕΝΗ ΣΙΚΑΛΗ (Secale cereale),
G13 ΟΛΚΟΣ ΤΡΙΧΩΤΟΣ (Holcus lanatus),
G14 ΚΑΛΛΙΕΡΓΟΥΜΕΝΗ ΒΡΩΜΗ (Avena sativa),
G15 ΚΑΛΛΙΕΡΓΟΥΜΕΝΟ ΣΙΤΑΡΙ (Triticum aestivum),
G16 ΑΛΩΠΕΚΟΥΡΟΣ (Alopecurus pratensis),
G17 ΠΑΣΠΑΛΟΣ (Paspalum notatum),
G70 ΕΛΥΜΟΣ (Elymus triticoides),
G71 ΦΑΛΑΡΗ (Phalaris arundinacea),
G201 ΚΡΙΘΑΡΙ (Hordeum vulgare),
G203 ΑΛΑΤΟΧΟΡΤΟ (Distichlis spicata),
G204 ΒΡΩΜΗ Η ΥΨΗΛΗ (Arrhenatherum elatius),
ΓΥΡΗ ΑΓΡΙΟΧΟΡΤΩΝ-ΖΙΖΑΝΙΩΝ (WEED POLLENS),
W1 ΑΜΒΡΟΣΙΑ ΚΟΙΝΗ (Ambrosia elatior),
W2 ΑΜΒΡΟΣΙΑ ΔΥΤΙΚΗ (Ambrosia psilostachya),
W3 ΑΜΒΡΟΣΙΑ (Ambrosia trifida),
W4 ΨΕΥΔΟΑΜΒΡΟΣΙΑ (Franseria acanthicarpa),
W5 ΑΨΙΘΙΑ (Artemisia absinthium),
W6 ΑΡΤΕΜΙΣΙΑ (Artemisia vulgaris),
W7 ΜΑΡΓΑΡΙΤΑ (Chrysanthemum leucanthemum),
W8 ΑΓΡΙΟΡΑΔΙΚΟ (Taraxacum vulgare),
W9 ΠΕΝΤΑΝΕΥΡΟ (Plantago lanceolata),
W10 ΛΟΥΒΟΥΔΙΑ (Chenopodium album),
W11 RUSSIAN THISTLE (Salsola kali),
W12 ΧΡΥΣΟΒΕΡΓΑ (Solidago virgaurea),
W13 ΞΑΝΘΙΟ (Xanthium commune),
W14 ΑΜΑΡΑΝΘΟΣ (Amaranthus retroflexus),
W16 ROUGH MARSH ELDER (Iva ciliata),
W19 ΠΕΡΔΙΚΑΚΙ (Parietaria officinalis),
W20 ΤΣΟΥΚΝΙΔΑ (Urtica dioica),
W21 ΠΕΡΔΙΚΑΚΙ (Parietaria judaica),
W22 ΑΣΙΑΤΙΚΟΣ ΛΥΚΙΣΚΟΣ (Humulus scandens),
W23 ΑΓΡΙΟΛΑΠΑΘΟ (Rumex crispus),
W46 ΕΥΠΑΤΟΡΙΟ (Eupatorium capillifolium),
W82 ΑΜΑΡΑΝΘΟΣ PALMER (Amaranthus palmeri),
W203 ΕΛΑΙΟΚΡΑΜΒΗ (Brassica napus),
W204 ΗΛΙΑΝΘΟΣ (Helianthus annuus),
W206 ΧΑΜΟΜΗΛΙ (Matricaria chamomilla),
W210 ΖΑΧΑΡΟΤΕΥΤΛΟ (Beta vulgaris),
T2 ΑΛΝΟΣ / ΣΚΛΗΘΡΑ (Alnus incana),
T4 ΦΟΥΝΤΟΥΚΙΑ (Corylus avellana),
T5 ΑΜΕΡΙΚΑΝΙΚΗ ΟΞΙΑ (Fagus grandifolia),
T6 ΚΕΔΡΟΣ ΒΟΥΝΟΥ / ΑΡΚΕΥΘΟΣ (Juniperus sabina),
T7 ΔΡΥΣ / ΒΕΛΑΝΙΔΙΑ (Quercus alba),
T10 ΚΑΡΥΔΙΑ (Juglans californica),
T11 ΠΛΑΤΑΝΟS (Platanus acerifolia),
T14 ΛΕΥΚΑ (Populus deltoides),
T15 ΜΕΛΙΑ / ΦΡΑΞΟΣ (Fraxinus americana),
T16 ΛΕΥΚΟ ΠΕΥΚΟ (Pinus strobus),
T17 ΙΑΠΩΝΙΚΟΣ ΚΕΔΡΟΣ (Cryptomeria japonica),
T18 ΕΥΚΑΛΥΠΤΟΣ (Eucalyptus sp.),
T19 ΑΚΑΚΙΑ (Acacia longifolia),
T20 ΠΡΟΣΩΠΙΣ (Prosopis juliflora),
T21 ΜΑΛΑΛΕΥΚΗ (Melaleuca leucadendron),
T23 ΚΥΠΑΡΙΣΣΙ (Cupressus sempervirens),
T25 ΦΡΑΞΟΣ (Fraxinus excelsior),
T37 ΦΑΛΑΚΡΟ ΚΥΠΑΡΙΣΣΙ (Taxodium distichum),
T44 ΜΕΛΙΚΟΚΙΑ / ΚΕΛΤΙΣ (Celtis occidentalis),
T45 ΦΤΕΛΙΑ ΠΑΧΥΦΥΛΛΗ (Ulmus crassifolia),
T70 ΜΟΥΡΙΑ ΛΕΥΚΗ (Morus alba),
T71 ΜΟΥΡΙΑ ΕΡΥΘΡΗ (Morus rubra),
T72 ΚΟΚΟΦΟΙΝΙΚΑΣ (Arecastrum romanzoffianum),
T73 ΑΥΣΤΡΑΛΙΑΝΟ ΠΕΥΚΟ (Casuarina equisetifolia),
T201 ΕΡΥΘΡΕΛΑΤΗ (Picea abies),
T203 ΑΓΡΙΟΚΑΣΤΑΝΙΑ (Aesculus hippocastanum),
T205 ΚΟΥΦΟΞΥΛΙΑ (Sambucus nigra),
T206 ΚΑΣΤΑΝΙΑ (Castanea sativa),
T207 ΨΕΥΔΟΤΣΟΥΓΚΑ (Pseudotsuga taxifolia),
T208 ΦΛΑΜΟΥΡΙΑ (Tilia cordata),
T209 ΓΑΥΡΟΣ (Carpinus betulus),
T210 ΛΙΓΟΥΣΤΡΟ (Ligustrum vulgare),
T212 ΚΑΛΟΚΕΔΡΟΣ (Libocedrus decurrens),
T213 ΠΕΥΚΟ ΚΑΛΙΦΟΡΝΙΑΣ (Pinus radiata),
T214 ΦΟΙΝΙΚΑΣ ΚΑΝΑΡΙΟΣ (Phoenix canariensis),
T217 ΣΧΙΝΟΣ / ΨΕΥΔΟΠΙΠΕΡΙΑ (Schinus molle),
T222 ΚΥΠΑΡΙΣΣΙ ΑΡΙΖΟΝΑΣ (Cupressus arizonica),
T223 ΕΛΑΪΣ ΓΟΥΙΝΕΑΣ (Elaeis guineensis),
P2 ΕΧΙΝΟΚΟΚΚΟΣ (Echinococcus sp.),
E1 ΤΡΙΧΩΜΑ ΓΑΤΑΣ (Felis domesticus),
E3 ΤΡΙΧΩΜΑ ΑΛΟΓΟΥ (Equus caballus),
E4 ΤΡΙΧΩΜΑ ΑΓΕΛΑΔΟΣ (Bos taurus),
E5 ΤΡΙΧΩΜΑ ΣΚΥΛΟΥ (Canis familiaris),
E6 ΕΠΙΘΗΛΙΟ ΙΝΔΙΚΟΥ ΧΟΙΡΙΔΙΟΥ (Cavia porcellus),
E7 ΠΕΡΙΤΤΩΜΑΤΑ ΠΕΡΙΣΤΕΡΙΟΥ (Columba sp.),
E70 ΦΤΕΡΑ ΧΗΝΑΣ (Anser anser),
E71 EΠΙΘΗΛΙΟ ΠΟΝΤΙΚΟΥ (Mus sp.),
E72 ΠΡΩΤΕΪΝΕΣ ΟΥΡΩΝ ΠΟΝΤΙΚΟΥ (Mus sp.),
E73 ΕΠΙΘΗΛΙΟ ΑΡΟΥΡΑΙΟΥ (Rattus sp.),
E74 ΠΡΩΤΕΪΝΕΣ ΟΥΡΩΝ ΑΡΟΥΡΑΙΟΥ (Rattus sp.),
E75 ΠΡΩΤΕΪΝΕΣ ΟΡΟΥ ΑΡΟΥΡΑΙΟΥ (Rattus sp.),
E76 ΠΡΩΤΕΪΝΕΣ ΟΡΟΥ ΠΟΝΤΙΚΟΥ (Mus sp.),
E78 ΦΤΕΡΑ ΠΑΠΑΓΑΛΟΥ (Melopsittacus undulates),
E80 ΕΠΙΘΗΛΙΟ ΚΑΤΣΙΚΑΣ (Capra hircus),
E81 EΠΙΘΗΛΙΟ ΠΡΟΒΑΤΟΥ (Ovis sp.),
E82 ΕΠΙΘΗΛΙΟ ΚΟΥΝΕΛΙΟΥ (Oryctolagus cuniculus),
E83 ΕΠΙΘΗΛΙΟ ΓΟΥΡΟΥΝΙΟΥ (Sus domestica),
E84 ΕΠΙΘΗΛΙΟ ΧΑΜΣΤΕΡ (Cricetus sp., Mesocricetus sp.,Phodopus sp.),
E85 ΦΤΕΡΑ ΚΟΤΟΠΟΥΛΟΥ (Gallus domesticus),
E86 ΦΤΕΡΑ ΠΑΠΙΑΣ (Anas platyrhynca),
E89 ΦΤΕΡΑ ΓΑΛΟΠΟΥΛΑΣ (Meleagris gallopavo),
E201 ΦΤΕΡΑ ΚΑΝΑΡΙΝΙΟΥ (Serinus canaries),
E215 ΦΤΕΡΑ ΠΕΡΙΣΤΕΡΙΟΥ (Columba livia),
D1 DERMATOPHAGOIDES PTERONYSSINUS,
D3 DERMATOPHAGOIDES MICROCERAS,
H1 ΟΙΚΙΑΚΗ ΣΚΟΝΗ / GREER LABS INC,
H2 ΟΙΚΙΑΚΗ ΣΚΟΝΗ / HOLLISTER -STIER LABS,
H4 ΟΙΚΙΑΚΗ ΣΚΟΝΗ / ALLERGOPHARMA,
I1 ΔΗΛΗΤΗΡΙΟ ΜΕΛΙΣΣΑΣ (Apis mellifera),
I2 ΔΗΛΗΤΗΡΙΟ ΣΦΗΚΑΣ ΛΕΥΚΟΠΡΟΣΩΠΗΣ (Dolichovespula maculata),
I3 ΔΗΛΗΤΗΡΙΟ ΣΦΗΚΑΣ ΚΟΙΝΗΣ (Vespula sp.),
I4 ΔΗΛΗΤΗΡΙΟ ΣΦΗΚΑΣ ΧΑΡΤΙΟΥ (Polistes annularis),
I5 ΔΗΛΗΤΗΡΙΟ ΣΦΗΚΑΣ ΚΙΤΡΙΝΗΣ (Dolichovespula arenaria),
I6 ΚΑΤΣΑΡΙΔΑ (Blatella germanica),
I70 ΜΥΡΜΗΓΚΙ (Solenopsis invicta),
I71 ΚΟΥΝΟΥΠΙ (Aedes communis),
I75 ΔΗΛΗΤΗΡΙΟ ΣΦΗΚΑΣ ΕΥΡΩΠΑΪΚΗΣ (Vespa crabro),
C1 ΠΕΝΙΚΙΛΛΙΝΗ G (Penicilloyl G),
C2 ΠΕΝΙΚΙΛΛΙΝΗ V (Penicilloyl V),
C6 ΑΜΟΞΙΚΙΛΛΙΝΗ (Amoxicillin),
C70 ΙΝΣΟΥΛΙΝΗ ΧΟΙΡΕΙΟΣ (Insulin, pig),
C71 ΙΝΣΟΥΛΙΝΗ ΒΟΕΙΟΣ (Insulin, bovine),
C73 ΙΝΣΟΥΛΙΝΗ ΑΝΘΡΩΠΙΝΗ (Insulin, human),
C209 ΧΥΜΟΠΑΠΑΪΝΗ (Chymopapain),
K20 ΜΑΛΛΙ ΠΡΟΒΑΤΟΥ (ΚΑΤΕΡΓΑΣΜΕΝΟ),
K21 ΜΑΛΛΙ ΠΡΟΒΑΤΟΥ (ΑΚΑΤΕΡΓΑΣΤΟ),
F33 ΠΟΡΤΟΚΑΛΙ (Citrus sinensis),
F84 AΚΤΙΝΙΔΙΟ (Actinidia deliciosa),
F91 ΜΑΝΓΚΟ (Mangifera indica),
F95 ΡΟΔΑΚΙΝΟ (Prunus persica),
F162 ΝΕΚΤΑΡΙΝΙ (Prunus persica v. nectarina),
F209 ΓΚΡΕΪΠΦΡΟΥΤ (Citrus paradisi),
F211 ΜΑΥΡΟ ΜΟΥΡΟ (Rubus fruticosus),
F237 ΒΕΡΥΚΟΚΟ (Prunus armeniaca),
F255 ΔΑΜΑΣΚΗΝΟ (Prunus domestica),
F259 ΣΤΑΦΥΛΙ (Vitis venifera),
F288 ΜΥΡΤΙΛΛΟ (Vaccinium myrtillis),
F302 ΜΑΝΤΑΡΙΝΙ (Citrus reticulata),
F25 NΤΟΜΑΤΑ (Lycopersicon lycopersicum),
F35 ΠΑΤΑΤΑ (Solanum tuberosum),
F51 ΜΠΑΜΠΟΥ ΒΛΑΣΤΟΣ (Phyllostachys pubescens),
F85 ΣΕΛΙΝΟ (Apium graveolens),
F96 ΑΒΟΚΑΝΤΟ (Persea americana),
F214 ΣΠΑΝΑΚΙ (Spinachia oleracea),
F215 MΑΡΟΥΛΙ (Lactuca sativa),
F216 ΛΑΧΑΝΟ (Brassica oleracea capitata),
F217 ΛΑΧΑΝΑΚΙ ΒΡΥΞΕΛΛΩΝ (Brassica oleracea gemmifera),
F225 ΚΟΛΟΚΥΘΑ (Curcubita pepo),
F244 ΑΓΓΟΥΡΙ (Cucumis sativum),
F260 ΜΠΡΟΚΟΛΟ (Brassica oleracea italica),
F261 ΣΠΑΡΑΓΓΙ (Asparagus officinalis),
F262 ΜΕΛΙΤΖΑΝΑ (Solanum melongena),
F276 ΜΑΡΑΘΟΣ (Foeniculum vulgare),
F291 ΚΟΥΝΟΥΠΙΔΙ (Brassica oleracea botrytis),
F315 ΦΑΣΟΛΙ ΠΡΑΣΙΝΟ (Phaseolus vulgaris),
F319 ΠΑΝΤΖΑΡΙ (Beta vulgaris),
F358 ΑΓΓΙΝΑΡΑ (Cynara scolymus),
F4 ΣΙΤΑΡΙ (Triticum aestivum),
F11 ΦΑΓΟΠΥΡΟ (Fagopyrum esculentum),
F10 ΣΟΥΣΑΜΙ (Sesamum indicum),
F13 ΦΥΣΤΙΚΙ ΑΡΑΠΙΚΟ (Arachis hypogaea),
F17 ΦΟΥΝΤΟΥΚΙ (Corylus avellana),
F18 ΦΥΣΤΙΚΙ ΒΡΑΖΙΛΙΑΝΙΚΟ (Bertholletia excelsa),
F20 AΜΥΓΔΑΛΟ (Amygdalus communis),
F183 ΗΛΙΟΣΠΟΡΟΣ (Helianthus annuus),
F201 ΠΕΚΑΝ (Carya illinoensis),
F202 ΚΑΣΙΟΥΣ (Anacardium occidentale),
F203 ΦΥΣΤΙΚΙ ΚΕΛΥΦΩΤΟ (Pistacia vera),
F299 ΚΑΣΤΑΝΟ (Castanea sativa),
F14 ΣΟΓΙΑ (Glycine max - Soja hispida),
F15 ΦΑΣΟΛΙ ΑΣΠΡΟ (Phaseolus vulgaris),
F309 ΡΕΒΙΘΙ (Cicer arietinus),
F86 MΑΙΝΤΑΝΟΣ (Petroselinum crispum),
F89 MOΥΣΤΑΡΔΑ (Brassica / Sinapis sp.),
F218 ΠΑΠΡΙΚΑ (Capsicum annuum),
F234 BΑΝΙΛΙΑ (Vanilla planifolia),
F277 ΑΝΙΘΟΣ (Anethum graveolens),
F3 ΜΠΑΚΑΛΙΑΡΟΣ (Gadus morhua),
F24 ΓΑΡΙΔΑ (Pandalus borealis),
F40 TOΝΟΣ (Thunnus albacares),
F59 ΧΤΑΠΟΔΙ (Octopus vulgaris),
F80 ΑΣΤΑΚΟΣ (Homarus gammarus),
F204 ΠΕΣΤΡΟΦΑ (Oncorhynchus mykiss),
F264 ΧΕΛΙ (Anguilla anguilla),
F303 ΙΠΠΟΓΛΩΣΣΟΣ (Hippoglossus hippoglossus),
F308 ΣΑΡΔΕΛΑ (Sardina pilchardus),
F313 ΑΝΤΖΟΥΓΙΑ (Engraulis encrasicolus),
F314 ΣΑΛΙΓΓΑΡΙ (Helix aspersa),
F320 ΚΑΡΑΒΙΔΑ (Astacus astacus),
F27 ΜΟΣΧΑΡΙΣΙΟ ΚΡΕΑΣ (Bos sp.),
F284 ΓΑΛΟΠΟΥΛΑ (Meleagris gallopavo),
F45 MΑΓΙΑ (Saccharomyces cerevisiae),
F212 ΜΑΝΙΤΑΡΙ (Agaricus hortensis),
F222 ΤΣΑΙ ΜΑΥΡΟ (Camellia sinensis),
F297 ΑΡΑΒΙΚΟ ΚΟΜΜΙ - E414 (Acacia sp.),
ΕΛΕΓΧΟΣ ΑΛΛΕΡΓΙΑΣ ΣΕ 34 ΤΡΟΦΙΜΑ,
F27 ΜΟΣΧΑΡΙΣΙΟ ΚΡΕΑΣ (Bos sp.),
F4 ΣΙΤΑΡΙ (Triticum aestivum),
F14 ΣΟΓΙΑ (Glycine max - Soja hispida),
F15 ΦΑΣΟΛΙ ΑΣΠΡΟ (Phaseolus vulgaris),
F25 NΤΟΜΑΤΑ (Lycopersicon lycopersicum),
F35 ΠΑΤΑΤΑ (Solanum tuberosum),
F85 ΣΕΛΙΝΟ (Apium graveolens),
F216 ΛΑΧΑΝΟ (Brassica oleracea capitata),
F33 ΠΟΡΤΟΚΑΛΙ (Citrus sinensis),
F95 ΡΟΔΑΚΙΝΟ (Prunus persica),
F20 AΜΥΓΔΑΛΟ (Amygdalus communis),
F13 ΦΥΣΤΙΚΙ ΑΡΑΠΙΚΟ (Arachis hypogaea),
F17 ΦΟΥΝΤΟΥΚΙ (Corylus avellana),
F45 MΑΓΙΑ (Saccharomyces cerevisiae),
F3 ΜΠΑΚΑΛΙΑΡΟΣ (Gadus morhua),
F24 ΓΑΡΙΔΑ (Pandalus borealis),
F40 TOΝΟΣ (Thunnus albacares),
ΕΛΕΓΧΟΣ ΑΛΛΕΡΓΙΑΣ ΣΕ ΞΗΡΟΥΣ ΚΑΡΠΟΥΣ,
F10 ΣΟΥΣΑΜΙ (Sesamum indicum),
F13 ΦΥΣΤΙΚΙ ΑΡΑΠΙΚΟ (Arachis hypogaea),
F17 ΦΟΥΝΤΟΥΚΙ (Corylus avellana),
F18 ΦΥΣΤΙΚΙ ΒΡΑΖΙΛΙΑΝΙΚΟ (Bertholletia excelsa),
F20 AΜΥΓΔΑΛΟ (Amygdalus communis),
F183 ΗΛΙΟΣΠΟΡΟΣ (Helianthus annuus),
F201 ΠΕΚΑΝ (Carya illinoensis),
F202 ΚΑΣΙΟΥΣ (Anacardium occidentale),
F203 ΦΥΣΤΙΚΙ ΚΕΛΥΦΩΤΟ (Pistacia vera),
ΕΛΕΓΧΟΣ ΑΛΛΕΡΓΙΑΣ ΣΕ ΔΗΜΗΤΡΙΑΚΑ,
F4 ΣΙΤΑΡΙ (Triticum aestivum),
ΕΛΕΓΧΟΣ ΑΛΛΕΡΓΙΑΣ ΜΕΣΟΓΕΙΑΚΟΥ ΤΥΠΟΥ,
E1 ΤΡΙΧΩΜΑ ΓΑΤΑΣ (Felis domesticus),
F13 ΦΥΣΤΙΚΙ ΑΡΑΠΙΚΟ (Arachis hypogaea),
D1 DERMATOPHAGOIDES PTERONYSSINUS,
D3 DERMATOPHAGOIDES MICROCERAS,
G5 ΗΡΑ ΠΟΛΥΕΤΗΣ (Lolium perenne),
G6 ΦΛΕΟΝ ΤΟ ΛΕΙΜΩΝΙΟΝ / ΤΡΙΦΥΛΛΙ (Phleum pretense),
ΒΑΣΙΚΟΣ ΕΛΕΓΧΟΣ ΑΛΛΕΡΓΙΑΣ ΓΙΑ ΠΑΙΔΙΑ,
E1 ΤΡΙΧΩΜΑ ΓΑΤΑΣ (Felis domesticus),
F13 ΦΥΣΤΙΚΙ ΑΡΑΠΙΚΟ (Arachis hypogaea),
F4 ΣΙΤΑΡΙ (Triticum aestivum),
F14 ΣΟΓΙΑ (Glycine max - Soja hispida),
D1 DERMATOPHAGOIDES PTERONYSSINUS,
D3 DERMATOPHAGOIDES MICROCERAS,
G6 ΦΛΕΟΝ ΤΟ ΛΕΙΜΩΝΙΟΝ / ΤΡΙΦΥΛΛΙ (Phleum pretense),
ΕΛΕΓΧΟΣ ΣΕ ΕΙΣΠΝΕΟΜΕΝΑ ΑΛΛΕΡΓΙΟΓΟΝΑ,
D1 DERMATOPHAGOIDES PTERONYSSINUS,
D3 DERMATOPHAGOIDES MICROCERAS,
G6 ΦΛΕΟΝ ΤΟ ΛΕΙΜΩΝΙΟΝ / ΤΡΙΦΥΛΛΙ (Phleum pretense),
E1 ΤΡΙΧΩΜΑ ΓΑΤΑΣ (Felis domesticus),
E5 ΤΡΙΧΩΜΑ ΣΚΥΛΟΥ (Canis familiaris),
W1 ΑΜΒΡΟΣΙΑ ΚΟΙΝΗ (Ambrosia elatior),
ΜΙΓΜΑ ΓΥΡΗΣ ΠΟΩΔΩΝ ΦΥΤΩΝ GX1 (G3, G4, G5, G6, G8),
ΜΙΓΜΑ ΓΥΡΗΣ ΠΟΩΔΩΝ ΦΥΤΩΝ GX2 (G2, G5, G6, G8, G10, G17),
ΜΙΓΜΑ ΓΥΡΗΣ ΑΓΡΙΟΧΟΡΤΩΝ-ΖΙΖΑΝΙΩΝ WX1 (W1, W6, W9, W10, W11),
ΜΙΓΜΑ ΓΥΡΗΣ ΑΓΡΙΟΧΟΡΤΩΝ-ΖΙΖΑΝΙΩΝ WX3 (W6, W9, W10, W12, W20),
ΜΙΓΜΑ ΓΥΡΗΣ ΑΓΡΙΟΧΟΡΤΩΝ-ΖΙΖΑΝΙΩΝ WX5 (W1, W6, W7, W8, W12),
ΜΙΓΜΑ ΓΥΡΗΣ ΑΓΡΙΟΧΟΡΤΩΝ-ΖΙΖΑΝΙΩΝ WX6 (W9, W10, W11, W18),
ΜΙΓΜΑ ΓΥΡΗΣ ΔΕΝΤΡΩΝ TX1 (T1, T3, T7, T8, T10),
ΜΙΓΜΑ ΓΥΡΗΣ ΔΕΝΤΡΩΝ TX2 (T1, T7, T8, T14, T22),
ΜΙΓΜΑ ΖΩΙΚΩΝ ΑΛΛΕΡΓΙΟΓΟΝΩΝ EX1 (E1, E3, E4, E5),
ΜΙΓΜΑ ΖΩΙΚΩΝ ΑΛΛΕΡΓΙΟΓΟΝΩΝ EX71 (E70, E85, E86, E89),
ΜΙΓΜΑ ΖΥΜΩΝ & ΜΥΚΗΤΩΝ MX1 (M1, M2, M3, M6),
ΜΙΓΜΑ ΟΙΚΙΑΚΗΣ ΣΚΟΝΗΣ HX2 (H2, D1, D2, I6),
ΜΙΓΜΑ ΤΡΟΦΙΜΩΝ (ΞΗΡΟΙ ΚΑΡΠΟΙ) FX1 (F13, F17, F18, F20, F36),
ΜΙΓΜΑ ΤΡΟΦΙΜΩΝ (ΘΑΛΑΣΣΙΝΑ) FX2 (F3, F24, F37, F40, F41),
ΜΙΓΜΑ ΤΡΟΦΙΜΩΝ FX3 (F4, F7, F8, F10, F11),
ΜΙΓΜΑ ΤΡΟΦΙΜΩΝ FX5 (F1, F2, F3, F4, F13, F14),
ΜΙΓΜΑ ΤΡΟΦΙΜΩΝ FX9 (F20, F84, F87, F92, F259),
ΜΙΓΜΑ ΤΡΟΦΙΜΩΝ FX10 (F26, F27, F75, F83, F284),
ΜΙΓΜΑ ΤΡΟΦΙΜΩΝ (ΦΡΟΥΤΑ) FX16 (F44, F94, F208, F210),
ΜΙΓΜΑ ΤΡΟΦΙΜΩΝ (ΞΗΡΟΙ ΚΑΡΠΟΙ) FX22 (F201, F202, F203, F256),
Anapafseos 5 . Agios Nikolaos
Crete.Greece.72100
2841026182
-
Summary Insulinomas are rare neuroendocrine tumours that classically present with fasting hypoglycaemia. This case report discusses an un...
-
The online platform for Taylor & Francis Online content New for Canadian Journal of Remote Sen...