Abstract
Background
Monoclonal antibodies (mAb) targeting SARS-CoV-2 are predominantly less effective against Omicron variants. Immunocompromised patients often experience prolonged viral shedding and are therefore at increased risk for viral escape mutations, when mAbs are used as monotherapy.
Methods
In an observational, prospective cohort, 57 patients infected with Omicron variants receiving sotrovimab alone or in combination with remdesivir were followed. The study endpoints were a decrease in SARS-CoV-2-RNA <10
6 copies/ml in nasopharyngeal swabs at day 21 and the emergence of resistance mutations at days 7, 14, and 21 after sotrovimab administration. All SARS-CoV-2 samples were analyzed by whole-genome sequencing, individual variants within the quasispecies were subsequently quantified and further characterized by a pseudovirus neutralization assay.
Results
47/57 patients (82.5%) were infected with Omicron/BA .1 and 10/57 (17.5%) with Omicron/BA.2. The vast majority of patients (43/57, 75.4%) were immunodeficient, predominantly due to immunosuppression after organ transplantation or hematologic malignancies. 21 days after sotrovimab administration, 12/43 (27.9%) of immunodeficient patients had prolonged viral shedding compared to 1/14 (7.1%) immunocompetent patients (p = 0.011). Longitudinal sequencing revealed that 14/43 (32.6%) immunodeficient patients had in part Omicron-specific viral spike protein mutations (e.g., P337S and/or E340D/V) that substantially reduced susceptibility to sotrovimab in a pseudovirus neutralization assay. Combination therapy with remdesivir significantly reduced the selection of escape variants.
Conclusions
Immunocompromised patients face a considerable risk of prolonged viral shedding and emergence of escape mutations after early therapy with sotrovimab. These findings underscore the importance of careful monitoring and the need to conduct dedic ated clinical trials for this patient population.