According to our new plans, Inoreader Pro is required to export RSS feeds.
If you are the owner of the feed, please consider upgrading to Pro.
http://bit.ly/2GfwCn4
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
According to our new plans, Inoreader Pro is required to export RSS feeds.
If you are the owner of the feed, please consider upgrading to Pro.
Selenite and selenate are two main selenium (Se) forms absorbed by plants. The comparative effects of selenite and/or selenate on Se uptake and translocation in plants in spite of their coexistence in the environment are still unclear. Therefore, tomato (Solanum lycopersicum L.) seedlings were grown in a hydroponic solution with exogenous selenite, selenate, or selenite and selenate mixed, and Se concentrations in shoots, roots, and xylem sap were measured after harvest. Results showed that selenite (> 0.1 mg Se L−1) could cause phytotoxicity more easily than selenate (> 1 mg Se L−1) under hydroponic conditions. And the absorbability rate of tomato to selenate was higher than that to selenite when Se application level was 0.0175–0.2998 mg L−1, while the opposite result was observed in other Se concentrations. More Se accumulated in roots and Se(VI) in the xylem sap decreased when both Se forms supplied. This study demonstrated that the difference between selenite and selenate on Se uptake and translocation in tomatoes depended on exogenous Se concentration. And selenite could inhibit the absorption and translocation of selenate when supplied with both Se forms.
Four different mixed fuels consisted of leather waste, coal, and sewage sludge were combusted in a lab-scale entrained flow fluidized bed furnace. The influence of blending ratio on emission characteristics of SO2, NOx, HCl, particulate matter (PM), heavy metals, and polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) was studied. Results showed that the mixing of coal with sewage sludge had a complex effect on the emission characteristics. On the one hand, with more sewage sludge blending in the mixed fuel, the acid gas pollutant (SO2, NOx) decreased a lot, and the recovery of volatile heavy metals (Cd, Pb) increased at the same time. Furthermore, the leaching toxicity of Cr in the fly ash and bottom ash went down below the national standard with the adding of sewage sludge. On the other hand, the mixing of sewage sludge which consisted of more ash content resulted in the increase of the PM emission. Moreover, the high content of Cu and chlorine in the sewage sludge can promote the formation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) when the fuel 3 and 4 were combusted. Most importantly, the concentration of toxic PCDD/Fs in the flue gas produced from fuel 3 and fuel 4 was successfully controlled down below 0.20 ng I-TEQ/Nm3 by the active carbon.
Necrotizing soft tissue infections are a group of conditions with a common pathophysiological basis, affecting any or all layers of the soft tissue compartment. They are rare, life-threatening diseases that require a high index of suspicion for early detection as well as urgent surgical debridement. Rarely, they can occur in more than one non-contiguous site of the body ('multifocal' disease), and this is associated with a much higher mortality than monofocal disease. Here, we present the case of a 46-year-old male with bilateral upper limb necrotizing soft tissue infection following an unclear history of trauma. The patient developed septic shock necessitating transfer to the intensive care unit following emergency surgery. Microbiological tests yielded Streptococcus pyogenes, Staphylococcus aureus and opportunistic Candida spp. and Actinomyces infections. A total of seven surgical debridements were performed; fortunately, the patient survived. We discuss the presentation, diagnosis and management of this case including primary reconstruction of the soft tissue defects, and review the literature on necrotizing soft tissue infections as a clinical entity, incorporating clinical updates from the latest guidelines worldwide.
Level of Evidence: Level V, therapeutic study.
Parmaceutically active compounds like diclofenac (DFS), ibuprofen (IBP), and other drugs that persist in the environment are listed as emerging contaminants. These escape from normal wastewater treatment plants and find their way to water streams; therefore, alternate treatment processes are needed. Herein, a sorbent material is reported that is prepared throug hydrotermal carbonization from dried fruit powder of Zizipus mauritiana L. (TC-ZM) and applied for simultaneous removal of DFS and IBP. Carbonized material (TC-ZM) was found as agglomerates of approximately 1 μm particle size with surface area of 1160 m2/g having oxygen functional groups (e.g., COO, O, C=O) on surface. Simultaneous removal of IBP and DFS onto TC-ZM was studied using response surface methodology with a set of 18 experiments using factors such as pH, amount of sorbent, contact time, and sorbate concentration. Maximum removal efficiency was obtained 88% and 97% for DFS and for IBP, respectively, with adsorption capacity of 2.03 mmol g−1 for DFS and 2.54 mmol g−1 for IBP. Kinetics modeling and "mean free energy" values predicted that sorption is mainly governed by pysical interactions followed by "pore filling" mechanism for uptake of DFS and IBP.
AbstractThe patient‐reported outcomes version of the Common Terminology Criteria for Adverse Events (PRO‐CTCAE) complements capture of symptomatic adverse events (AEs) by clinicians. Previous trials have typically used a limited subset of relevant symptomatic AEs to reduce patient burden. We aimed to determine the feasibility of administering all 80 AEs included in the PRO‐CTCAE library by approaching consecutive patients enrolled in a large academic phase I program at three points in time. Here, we report a preplanned analysis after enrolling the first 20 patients. All items were answered on 51 of 56 potential visits (adherence 91%). Three (5%) additional PRO‐CTCAE assessments were partially completed, and two (4%) were missed because of conflicting appointments. No patient withdrew consent or chose not to complete the assessments once enrolled on study. Future trials of experimental drugs that incorporate the PRO‐CTCAE should consider using this unselected approach to identify adverse events more completely.
http://bit.ly/2RHkMmU
AbstractNeoadjuvant cisplatin‐based chemotherapy (NAC; 70 mg/m2) is standard of care for muscle‐invasive bladder carcinoma (MIBC). Many patients (pts) cannot receive cisplatin because of renal impairment, and administration of cisplatin 35 mg/m2 on day 1 + 8 or 1 + 2 (i.e., split schedule) is a commonly used alternative. In this retrospective analysis, we compared complete (pT0) and partial (<pT2) pathologic response rates between split schedule (SS) and conventional schedule (CS) pts, after 1:1 matching on chemotherapy regimen, number of cycles, tumor histology, and clinical stage. Eighty matched pts were identified. pT0 rates were 17.5% (95% confidence interval [CI], 7%–33%) and 32.5% (95% CI, 19%–49%) in SS and CS cisplatin pts, respectively (p = .21), corresponding to an odds ratio for pT0 of 0.45 (95% CI, 0.16–1.31) with SS cisplatin. Split schedule cisplatin was associated with numerically but not statistically significant lower pathologic response rates relative to full dose.
http://bit.ly/2WM9Zvv
The objective of this study was to investigate the concentration distribution of indoor air pollutants in taxis and ships (passengers) which are frequently used for public transportation and recreational activities in South Korea. In addition, it aimed to assess air quality factors to establish and evaluate the health risks of exposure to polluted indoor air. Particulate matter (PM10) concentrations were not affected by the number of passengers, time of day, and driving characteristics because there were only a few passengers (2 to 4 people) and the space was confined. In the ships, indoor air pollutants responded more sensitively to the operation characteristics depending on the time of sailing (i.e., anchoring and departure, movement of vehicles on the ship, movement of passengers, combustion in the shop, and ventilation) than to the number of people boarding and alighting. The carbon dioxide concentrations in different ship rooms did not vary according to season and degree of congestion; however, there were differences between different ships. These differences may result from the size, type, and operating characteristics of the ships. Volatile organic compounds (VOCs) and aldehydes in new taxis exceeded the standard levels during summer. VOC concentrations in ships were particularly high during summer when the outdoor temperature was high. Similar observations were made for other means of transportation. The risk assessment depended on the means of transportation and demonstrated that mortality risks due to PM10 and excess carcinogenic and non-carcinogenic risks from VOCs and aldehydes were within safety levels.
An appraisal of seawater intrusion into the coastal aquifers is one of the major issues for groundwater resource management. The GALDIT model applies to the analysis of multiple parameters using systematic GIS techniques for mapping and assessment of seawater intrusion vulnerability. It demarcates the mapping of potential vulnerability that shows a higher vulnerability to seawater intrusion in various parts of the coast and the estimated vulnerability index value of 7.50 and 9.64. An area of 33.0 km2 spread in the low-lying coastal area comprising estuaries, salt marshes, and saltpans shows the high vulnerability condition with an estimated vulnerability value of 6.42–7.50. An area of 73.20 km2 spread over coastal and alluvial plains experiences moderate vulnerability (temporal salinity in the groundwater sources) with an estimated vulnerability index value of 5.46–6.42. Aquifers underlying coastal uplands (hard rock formations) and some parts of accretionary beaches (2.05 km2) are relatively protected fresh groundwater sources, wherein the estimated vulnerability index is 4.55–5.46. The vulnerability mapping of the GALDIT model using hydrochemical analysis of primary groundwater parameters such as TDS, Cl−, HCO3, and Cl−/HCO3 ratio is validated. Higher concentration of TDS (2637–4162 mg/l) and Cl− (1268–2347 mg/l) is taken for the areas falling under higher vulnerability to seawater intrusion, especially in the placer mining sites and coastal areas facing erosion. Similarly, the groundwater sources of the low-lying areas including estuaries, salt marshes, saltpans, and backwater were noted to have higher values of Cl−/HCO3 with a rationality of 9.87–12.18. Hydrological facies shows the highest concentration of NaCl in the groundwater sources within the proximity of eroded beaches, saltwater bodies, and sand mining areas. A hydrochemical facies evolution (HFE) diagram represents the hydrochemical facies of groundwater elements that shows an intrusion of seawater into the coastal aquifers underlying the very high vulnerable zones. Higher bicarbonate concentration (233–318 mg/l) is noticed in the upland areas and some parts of dunes and accreted beaches, sandy coasts, and uplands. Vulnerability analysis reveals that those areas near saltwater bodies and eroding coasts are prone to lateral and vertical diffusion of saltwater. The geodatabase developed through such modeling studies can help in planning and developing activities for sustainable groundwater resource management in coastal areas.
This article presents the results of investigations carried out to evaluate the improvement in combustion, performance, and emission characteristics of a diesel engine fueled with neat petro-diesel (PD), soybean biodiesel (SB), and 50% SB blended PD (PD50SB) by using carbon nanotube (CNT) as an additive. The acid–alkaline-based transesterification process with sodium hydroxide (NaOH) as a catalyst was applied to derive the methyl ester of SB. A mass fraction of 100 ppm CNT nanoparticle was blended with base fuels by using an ultrasonicator and the physiochemical properties were measured based on EN standards. The measured physiochemical properties are in good agreement with standard limits. The experimental evaluations were carried out under varying brake mean effective pressure (BMEP) conditions in a single-cylinder, four-stroke, and natural aspirated research diesel engine at a constant speed of 1500 rpm. The results reveal that the SB and its blend promote shorter ignition delay period (IDP) that is resulting in lower in-cylinder pressure (ICP) and net heat release rate (NHR) compared to PD. The SB and its blend increase the brake specific fuel consumption (BSFC), and reduce the brake specific energy consumption (BSEC) and exhaust gas temperature (EGT), due to lower heating value, and efficient combustion, respectively. As far as the emission characteristics are concerned, the SB and its blend promote lower magnitude of hydrocarbon (HC), carbon monoxide (CO), carbon dioxide (CO2), and smoke emissions compared to PD except for oxides of nitrogen (NOx) emission. The CNT nanoparticle inclusion with base fuels significantly improves the combustion, performance, and emissions level irrespective of engine load conditions.
We used a green sol–gel synthesis method to fabricate a novel nanoporous copper aluminosilicate (CAS) material. Nanoporous CAS was characterized using X-ray powder diffraction (XRD), field emission transmission and scanning electron microscopies (FE-TEM/FE-SEM), Fourier transform infrared (FTIR) spectroscopy, and optical analyses. The CAS was also evaluated for use as a promising disinfectant for the inactivation of waterborne pathogens. The antimicrobial action and minimum inhibitory concentration (MIC) of this CAS disinfectant were determined against eight microorganisms (Escherichia coli, Salmonella enterica, Pseudomonas aeruginosa, Listeria monocytogenes, Staphylococcus aureus, Enterococcus faecalis, Candida albicans, and Aspergillus niger). An antimicrobial susceptibility testing of CAS was measured. Results of disc diffusion method pointed out that the diameters of the zone using well diffusion were wider than disc diffusion methods, and the findings also showed that the MIC of the CAS disinfectant against E. coli, S. enterica, and P. aeruginosa was 100 mg/L within 20 min of contact time. Meanwhile, the MIC of the CAS disinfectant was 100 mg/L within 40 min of contact time for the other strains. The efficacy of antimicrobial action (100%) reached within 20 to 40 min against all tested microbes. Herein, the antimicrobial susceptibility testing of CAS disinfectant showed no toxicity for human and bacterial cells. It can be concluded that nanoporous CAS is a promising, economically, and worthy weapon for water disinfection.
Can Gio district is located in the coastal area of Ho Chi Minh City, southern Vietnam. Discharge of wastewater from Ho Chi Minh City and neighboring provinces to the rivers of Can Gio has led to concerns about the accumulation of trace metals (As, Cu, Cr, Ni, Pb, and Zn) in the coastal sediments. The main objective of this study was to assess the distribution of As, Cu, Cr, Ni, Pb, and Zn in surface and core sediments and to evaluate the contamination status in relation to local background values, as well as the potential release of these selected trace metals from sediments to the water environment. Sediment characteristization, including determination of fine fraction, pH, organic matter, and major elements (Al, Fe, Ca, K, Mg, and S), was carried out to investigate which parameters affect the trace metal enrichment. Fine fraction and Al contents were found to be the controlling proxies affecting the distribution of trace metals while other sediment characteristics did not show any clear influence on trace metals' distribution. Although As concentrations in the sediments were much higher compared to its reference value in other areas, the enrichment factor based on local background values suggests minor contamination of this element as well as for Cr, Cu, and Pb. Risk assessment suggested a medium to very high risk of Mn, Zn, and Ni under acidification. Of importance is also that trace metals in sediments were not easily mobilized by organic complexation based on their low extractabilities by ammonium-EDTA extraction.
Suppression of periodontal pathogens in the oral cavity of periodontally healthy individuals may lower the risk for periodontal or periimplant diseases. Therefore, the present study aimed to analyze the effect of supragingival debridement (SD) with adjunctive full mouth glycine powder air polishing (FM-GPAP) on the prevalence of periodontal pathogens in periodontally healthy individuals.
Eighty-seven systemically and periodontally healthy intraoral carriers of red complex bacteria, i.e., Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola or other periodontal pathogens including Aggregatibacter actinomycetemcomitans, Prevotella intermedia, and Eikenella corrodens were enrolled into the study and randomly assigned to receive SD with adjunctive FM-GPAP (test, n = 42) or SD alone (control, n = 45). In the first observation period, microbiological samples were obtained prior to, and 2, 5, and 9 days following intervention. If one of these periodontal pathogens could still not be identified, additional microbial sampling was performed after 6 and 12 weeks.
The prevalence of red complex bacteria was significantly reduced in the test compared to the control group following treatment (p = 0.004) and at day 9 (p = 0.031). Intragroup comparison showed a significant (test, p < 0.001; control, p ≤ 0.01) reduction in the mean prevalence in both groups from BL through day 9 with an additional significant intergroup difference (p = 0.048) at day 9. However, the initial strong reduction returned to baseline values after 6 and 12 weeks.
In periodontally healthy carriers of periodontal pathogens, FM-GPAP as an adjunct to SD transiently enhances the suppression of red complex bacteria.
Whether the enhanced suppression of red complex bacteria by adjunctive FM-GPAP prevents the development of periodontitis in periodontally healthy carriers requires further investigations.
Magnetic resonance imaging (MRI) is a standardized method for assisting joint diagnosis. To validate the reliability of different imaging-based grading systems, this study examined (1) the associations between grading systems for osseous change, joint effusion, and the Wilkes classification of temporomandibular joint (TMJ) disorders and (2) the correlation between cytokines in synovial fluid and imaging-based joint scores.
Twenty-seven patients, who routinely received numeric rating scale (NRS) and MRI assessment before TMJ arthrocentesis, were enrolled. Each joint was evaluated through the grading criteria for severity of osseous change and joint effusion by blinded observers using MRI. ImageJ was employed for classifying joint effusion. Joint synovial fluid, collected through arthrocentesis, was examined for cytokine expression by using a Luminex multiplex assay. All data were analyzed using the Pearson correlation analysis.
The Wilkes classification was strongly correlated with osseous change scores, but not with joint effusion scores. Joint effusion scores significantly correlated with NRS scores, but not with the Wilkes classification and osseous change scores. Compared with osseous change scores, joint effusion scores had a higher correlation with the levels of inflammatory cytokines (interleukin (IL)-8 and soluble IL-6 receptor (sIL-6R)) and with anti-inflammatory cytokines (soluble tumor necrosis factor receptors I and II (sTNF-RI/II)).
In patients with TMJ disorders, MRI grades are strongly correlated with NRS scores and levels of cytokines (IL-8, sIL-6R, and sTNF-RI/II) in the synovial fluid.
Joint effusion scoring can be a reliable and valid indicator for pathological assessment of TMJ disorders.
Gaseous fuel as a combustion enhancer with a pilot fuel offers significant benefits in improving engine efficiency. Hydrogen and hydroxy are the two most common gaseous fuels that have been widely investigated in the CI engine but which one performs best is still inconvenient. In this study, hydrogen and hydroxy were injected with BD40 (v/v) separately in a common diesel engine to compare the performance and emission characteristics of these fuels. Engine performance parameters include brake thermal efficiency (BTE) and brake-specific energy consumption (BSEC), and exhaust emissions include hydrocarbon (HC), CO, CO2, NOx, and smoke opacity. The induction of both hydroxy and hydrogen with BD40 has a positive effect on engine performance and emissions except NOx when compared to neat diesel fuel and BD40. The BTE of hydroxy-rich BD40 increased by 7.2% while BSEC reduced by 7.6% as compared to BD40 with hydrogen. The CO, HC, and smoke opacity of hydroxy-operated engine was found to be better than hydrogen-inducted engine. The NOx emission increased with the induction of both gaseous fuels and hydroxy-enriched BD40 produced 12.5% more emission than hydrogen-operated BD40 engine. Thus, more concisely, hydroxy-operated biodiesel engine performed better than hydrogen engine in terms of BTE, BSEC, CO, HC, and smoke opacity.
Tartrazine is one of the most widely used food additives. The present investigation was carried out on 40 adult male albino rats. They were divided into four groups of ten animals for each. Group I was considered as a control group. Group II was treated with tartrazine daily in a dose 7.5 mg/kg body weight by oral gavage for 30 days. Group III was received 15 mg/kg body weight of tartrazine for the same period. Group IV was administered tartrazine in a dose 100 mg/kg body weight for the whole duration of the experiment. At the end of experiment, samples from the cerebellum, submandibular salivary glands, and kidneys were fixed in neutral buffered formalin 10% and prepared routinely for paraffin sectioning and staining for histopathological and immunohistochemical investigations of proliferating cell nuclear antigen "PCNA" and glial fibrillar acidic protein "GFAP". Tartrazine-treated groups revealed histopathological degenerative changes in the obtained organs. In group II, the cerebellum showed subcortical edema, congestion of the blood vessels, cytoplasmic vacuolations, and pyknosis of the nuclei in the gray matter neurons. Concerning the submandibular glands, they expressed cytoplasmic vacuolations and pyknosis of the nuclei of the acinar cells, congestion of the interacinar blood capillaries, and degenerative changes in the striated duct. The kidneys appeared with interstitial hemorrhage and dilatation of the glomerular capillaries. The PCT and DCT showed ill-defined cell boundaries. The collecting tubules in the renal medulla appeared with flattened epithelial cells. The severity of these changes increases by increasing the dose of tartrazine in group III and reach to the highest level in group IV. The immunoexpression of the GFAP in the cerebellum of the experimental groups was intense compared to the control group. The immunoreactivity of PCNA in the nuclei of the acinar and ductal cells of the submandibular gland and the cells of the renal cortex and medulla was strong in the tartrazine-treated groups compared to the control group. The current study concluded that the tartrazine had serious effect on the cerebellum, submandibular glands, and kidneys that adversely affect the functions of these organs.
Acid mine discharge (AMD) has been demonstrated to have significant impacts on microbial community composition in the surrounding soil environment. However, their effect on adjacent soil has not been extensively studied. In this study, microbial community composition of 20 AMD-contaminated soil samples collected from an abandoned coal mine along an AMD creek was characterized using high-throughput sequencing. All samples were characterized as extremely low in pH (< 3) and relatively enriched in HCl-extractable Fe species. The dominant phylotypes were belonging to genera Ochrobactrum, Acidiphilium, Staphylococcus, Brevibacterium, and Corynebacterium. Canonical correspondence analysis results revealed that the HCl-extractable Fe(III) had a strong impact on the soil microbial assemblage. Co-occurrence network analysis revealed that Aquicella, Acidobacteriaceae, Ochrobactrum, Enhydrobacter, Sphingomonas, and Legionellales were actively correlated with other taxa. As expected, most of the abundant taxa have been reported as acidophilic Fe-metabolizing bacteria. Hence, a co-occurring sub-network and a phylogenetic tree related to microbial taxa responsible for Fe metabolism were constructed and described. The biotic interaction showed that Dechloromonas exhibited densely connections with Fe(III)-reducing bacteria of Comamonas, Burkholderia, Shewanella, Stenotrophomonas, Acidithiobacillus, and Pseudomonas. These results demonstrated that Fe-metabolizing bacteria could have an important role in the Fe biogeochemical cycling.
Metal(loid)s in the reservoir sediment tend to be released into the water column when encountering disturbances and thus pose threats to the aquatic system. In this study, sediment and pore water samples collected from eight cross sections in the Biliu River Reservoir (Dalian, China) were analyzed to determine the spatial distributions of six metal(loid)s and their associations with reservoir morphometry and hydrodynamics. The results show that total metal concentrations of the sediments are higher at the sites with greater water depths and are influenced by the reservoir morphometry. Mn is of great concern with respect to its increasing total concentration from the upstream sites to the dam sites. According to the improved BCR sequential extraction procedure, the acid-soluble fraction of Mn increases along the thalweg to the dam, implying the soluble Mn2+ in the upstream hypolimnion, and sediment is possible to be transported longitudinally by water currents. For Fe, Mn, Pb, Cu, and Zn, the reducible fraction accounts for more than 15% of the total metal concentration, which suggests that Fe–Mn (hydr)oxides could be important in scavenging these metals. High Mn concentrations in pore waters close to the dam, with an average value of more than 40 mg/L, give rise to significant Mn diffusive flux up to 296.1 mg/m2/day.
Indiscriminate disposal and open burning of sawmill and municipal solid wastes constitute hazards to the quality of the immediate environment and human health. This study assessed the levels of pollutants emitted by burning sawmill and municipal wastes, and their potential hazards. Nine selected sawmills and 6 municipal solid-waste dumps in Abeokuta metropolis were investigated. During waste burning, the concentrations of NO2, SO2, CO, H2S, NH3 and VOC were monitored in replicates at the dumpsites, 10 m, 20 m and the nearest houses using portable samplers (Aeroqual and Multi-RAE). Mean, ANOVA, correlation and regression statistical tools were used to analyse air quality data; air quality index (AQI) was employed to classify the hazard rating of the gaseous pollutants. Nearest neighbour analysis in ArcGIS 10.0 was used to investigate dumpsites location pattern within the city. The concentrations (mg/m3) of sampled parameters from source to nearest house (NH) at the dumpsites ranged as follows: < 0.002–0.175 (NO2), < 0.002–0.235 (SO2), 0.065–0.425 (H2S), 13.98–47.40 (CO), 6.74–170.41 (NH3) and 31.13–820.03 (VOC) in wet and dry seasons. The mean concentrations of NO2, SO2 and VOC were below permissible limits at most locations while CO values were higher at all dumpsite. Significant variations (p < 0.05) were observed in the concentrations of the monitored parameters except NO2 values (SMW) in dry season. AQI rated NO2 and SO2 concentrations as "good" at all sites while CO emission ranged from unhealthy to hazardous across the dumpsites. In conclusion, the present locations of SMW and MSW dumps in the city degrade environmental quality and are unsafe for human health.
Chlorine-containing organic waste (COWs) is a big threat for the waste incineration because of the dioxin generation and equipment corrosion. Recently, dechlorination and detoxification of COWs is emergent in order to lower the environmental risk and treatment costs. In this study, base-catalyzed decomposition processes with different hydroxides, hydrogen donors, and catalysts were conducted for pre-treatment of COWs to reduce organic chlorine content, with the TCB as a model compound and industrial rectification residues for verification. Results showed that maximum chlorine retention efficiency (CRE) of four alkalis followed the order of KOH > NaOH–KOH > NaOH > Mg(OH)2, which were 98.3%, 93.4%, 97.2%, and 1.5%, respectively, and could be expressed as an apparent first-order reaction. The differences were resulted from the varying ionic potentials of the metal cations. Hydrogen donors (glycol, glycerol, paraffin oil, and PEG 200) acted as effective dechlorination regents follow the order of PEG > glycol > paraffin oil > glycerol. In addition, Fe, Ni, Cu, and activated carbon catalysts increased the CRE by 68.9% to 92.4%, 91.9%, 89.2%, and 73.3%, respectively. Residue analysis through X-ray diffraction and Fourier transform infrared spectroscopy revealed that KCl, sodium oxalate, and phenol were the main products and a plausible stepwise dechlorination pathway was proposed. The effectiveness of three optimized combinations including NaOH/PEG, KOH/PEG, and NaOH–KOH/PEG (with the Fe catalyst) was confirmed by using them for dechlorinating rectification residues, and they restrained 98.2%, 91.2%, and 94.6% of the chlorine, respectively. The organochlorine content decreased from 19.2 to 1.8% within 180 min, while inorganic chorine content increased from 1.5 to 18.9%, indicating the potential for COWs dechlorination.
Sediments are reservoirs and sources of DDTs to the aquatic ecosystem. However, the role of sediment particulate matter and benthic organisms in transferring DDTs remains unclear. In this study, microcosms were built up with different groups to simulate a freshwater system with DDT-contaminated sediment and organisms. The impacts of different exposure routes (water and sediment) on the changes of DDT and its metabolites (DDD and DDE) in carp (Cyprinus carpio) were investigated. The bioturbation of Tubifex tubifex (Oligochaeta, Tubificidae) was investigated to understand the fate and transfer of DDTs in aquatic environment. For the sediment treatment, the concentrations of o,p'-DDT in carp were significantly higher than those of p,p'-DDT, and the metallothionein (MT) content decreased. The bioaccumulation of DDTs in carp via sediment particulate matter was significantly higher/faster than that via overlying water. T. tubifex and sediment particulate matter accelerate DDT bioaccumulation in carp. Selective enrichment of the (+)-o,p'-DDT and (+)-o,p'-DDD was found in carp. These results help to reduce uncertainty in ecological and health risk assessments and to better understand the risk of DDTs in the environment.
Evaluating the fit of CAD/CAM lithium disilicate ceramic crowns fabricated on basis of direct and indirect digitalization of impressions by CBCT or of dental casts.
A metal model with a molar chamfer preparation was digitized (n = 12 per group) in four ways: IOS—direct digitalization using an Intra-Oral scanner (CS3600), cone-beam computed tomography scan (CBCT 1)—indirect digitalization of impression (CBCT-CS9300), CBCT 2—indirect digitalization of impression (CBCT-CS8100), and Extra-Oral scanner (EOS)—indirect digitalization of gypsum-cast (CeramillMap400). Accuracy of 3D datasets was evaluated in relation to a reference dataset by best-fit superimposition. Marginal fit of lithium disilicate crowns after grinding was evaluated by replica technique. Significant differences were detected for 3D accuracy by Mann–Whitney U and for fit of crowns by One-way ANOVA followed by Scheffe's post hoc (p = 0.05).
3D analysis revealed mean positive and negative deviations for the groups IOS (− 0.011 ± 0.007 mm/0.010 ± 0.003 mm), CBCT 1 (− 0.046 ± 0.008 mm/0.093 ± 0.004 mm), CBCT 2 (− 0.049 ± 0.030 mm/0.072 ± 0.015 mm), and EOS (− 0.023 ± 0.007 mm/0.028 ± 0.007 mm). Marginal fit presented the results IOS (0.056 ± 0.022 mm), CBCT 1 (0.096 ± 0.034 mm), CBCT 2 (0.068 ± 0,026 mm), and EOS (0.051 ± 0.017 mm).
The marginal fit of EOS and IOS, IOS and CBCT 2, and CBCT 2 and CBCT 1 showed statistical differences. The marginal fit of CBCT 1 and CBCT 2 is within the range of clinical acceptance; however, it is significant inferior to EOS and IOS.
The use of a CBCT enables clinicians to digitize conventional impressions. Despite presenting results within clinical acceptable levels, the CBCT base method seems to be inferior to Intra-Oral scans or to scanning gypsum models regarding the resulting accuracy and fit.
Publication date: Available online 5 February 2019
Source: Journal of Autoimmunity
Author(s): Aaron Pariente, Alexis Guédon, Sonia Alamowitch, Sara Thietart, Fabrice Carrat, Stephen Delorme, Jean Capron, Carlotta Cacciatore, Michael Soussan, Azeddine Dellal, Olivier Fain, Arsene Mekinian
Acute cerebrovascular ischemic events are a rare and severe complication of giant cell arteritis (GCA). We aimed to determine the prevalence of GCA-related stroke, the overall survival and the relapse-free survival in patients with GCA.
A multicentric retrospective analysis was performed on 129 patients with GCA diagnosed between September 2010 and October 2018 in two University Hospitals. Among 129 GCA patients, 18 (16%) presented an acute ischemic cerebrovascular event. Patients with stroke were older (83 [67–96] years versus 76 [58–96]; p = 0.014) and more frequently males (61% versus 30%; p = 0.014) than those without stroke. The frequency of anterior ischemic optic neuropathy was higher in patients with stroke (n = 6, 33%) than patients without stroke (n = 12, 11%)(p = 0.02). Overall survival was significantly decreased in GCA patients with stroke (4.4 months), comparatively to patients without stroke (221.7 months; log rank test = 0.006). The 3-years relapse-free survival was decreased in patients with stroke (8.42 versus78.0 months; log rank = 0.0001), as well as the time with sustained remission (78 versus 139 months; log rank test = 0.0004). This study shows the prevalence and risk factors of ischemic stroke in GCA.
Publication date: Available online 6 February 2019
Source: Cortex
Author(s): Candice C. Morey
Publication date: Available online 6 February 2019
Source: Cortex
Author(s): Agustín Ibáñez
Publication date: Available online 5 February 2019
Source: Cortex
Author(s): Chiara Nicolini, Diana Harasym, Claudia V. Turco, Aimee J. Nelson
Although there is some evidence that handedness is associated with structural and functional differences in the motor cortex, findings remain inconclusive. Here, we evaluated whether handedness influences the location, size and overlap of the cortical representations of upper limb muscles across hemispheres in right-versus left-handed individuals. Using transcranial magnetic stimulation, the cortical representations of abductor pollicis brevis, flexor carpi radialis and biceps brachii muscles were mapped bilaterally with a 6 by 5 grid space. Results indicate that right-handers had more lateral and posterior representations in the non-dominant hemisphere as well as greater overall cortical territory compared to left-handers. Right- and left-handers did not differ in the extent of overlap between muscle representations. Our findings suggest that human motor cortical organization of upper limb muscles is indeed influenced by handedness, specifically with regard to the location of non-dominant cortical muscle representations and the size of cortical territory dedicated to upper limb muscle representations.
Year-round film mulching in winter wheat field facilitates rainwater storage in summer fallow period and reduces water evaporation in growing reason, and then increases water use efficiency in the dryland of the Loess Plateau, China. Optimized fertilization further promotes fertilizer utilization efficiencies. In this study, plastic film mulching was extended from plant growth season to summer fallow, and fertilizers were applied by monitoring soil nutrient availability. Field trials were conducted in the dryland of the Loess Plateau over 4 years by using four types of cultivation to investigate the effects of year-round plastic film mulching with monitored fertilization on utilization efficiencies of rainwater and nitrogen (N), and winter wheat yield. The four types of cultivation were farmer practice (FP), ridge-furrow with plastic film mulching system plus conventional fertilization(RPCF), ridge-furrow with plastic film mulching system plus monitored fertilization (RPFM), and flat soil surface with plastic film mulching system plus monitored fertilization (FPFM). Our results indicate that the average yield of winter wheat in RPFM and FPFM treatments was 4491 kg ha−1. Compared with FP treatment, the combined effects of monitored fertilization and film mulching(RPFM and FPFM treatments) could increase grain yield in the range of 24.7 to 42.1%. The film mulching extended to the fallow season increased the water storage in 2 m depth of soil profile, and the amount of soil water storage in the summer fallow period increased by 27 to 30% in FPFM treatment than FP treatment. After 4-year consecutive planting of wheat, the accumulation of nitrate-N in 2 m soil reached 277 kg·ha−1 in the FP treatment, which is 87.7% higher than of the level at the beginning of the experiment. Seventy-five percent of nitrate-N was distributed in the soil layer of 0–120 cm. In addition, the residual nitrate-N showed downward leaching with rainfall during the experiment. The RPFM and FPFM treatments reduced the apparent loss and residual levels of soil N, whereas increased its apparent mineralization compared with FP treatment. The FPFM treatment exhibited a greater utilization of residual nitrate-N from previous years and showed a higher amount of the mineralized N from soil organic matter, therefore leading to a relatively high apparent utilization rate of N (56.7%). Considering both grain yield production and utilization efficiencies of water and N, FPFM with year-round mulching was the most effective cultivation measure for winter wheat in the Loess Plateau.
In response to the Walloon Environment and Health Program, the Scientific Institute of Public Services (ISSeP) developed an integrated approach of environmental exposure assessment in the Walloon region, Belgium. The study presents an index-based approach to estimate the multiple environmental burdens at regional level and detailed local resolution. Indicators are based on environmental measurements of pollutants in ambient air and soil, and on stressors for citizens related to noise and radon. These indicators were mapped as proportions to obtain an accurate comparison between spatial units. In order to indicate the need for intervention, environmental indicators are calculated as the proportion of areas where the level of detrimental environmental factors exceeds threshold values from WHO guidelines and Walloon legal threshold values. In parallel, a spatial web tool based on GIS was developed to enable a flexible and weighted combination of the normalized indicators by computing the resulting composite index online. This interactive web tool designed for policy makers and experts eases the spatial analysis of results in order to identify geographic areas where hotspot exposures are a potential risk to human health. The next steps of this work aim to integrate more environmental indicators (stressors and benefits) and some sociodemographic and health indicators in order to detect vulnerable populations. A holistic assessment is essential to inform environmental justice debates and to ensure a health conducive equal environment. Finally, this environmental health tool will support decision makers focus resources and programs to improve the environmental health of Walloons living in areas disproportionately burdened by multiple sources of pollution.
The purposes of this research are to quantify the concentration of heavy metals (Zn, Cu, As, Pb, Cd, and Hg) in the water and fish tissues of common carp (Cyprinus carpio) in the upper Mekong River and to thereby elucidate the potential dietary health risks from fish consumption of local residents. Surface water and fish tissues (gill, muscle, liver, and intestine) from four representative sample areas (influence by a cascade of four dams) along the river were analyzed for heavy metal concentrations. Results revealed that the levels of heavy metals in fish were tissue-dependent. The highest Cu and As levels were found in the liver; the highest Zn and Pb levels occurred in the intestine, and the highest Hg level was found in the muscle. The total target hazard quotient (THQ) value for residents is > 1 for long-term fish consumption, and local residents are, therefore, exposed to a significant health risk. Results from the current study provide an overall understanding of the spatial and tissue distribution of heavy metals in water and fish body along the upper Mekong River under the influence of cascade dams and highlight the potential health risk of As for the local residents of long-term fish consumption.
Saline infusion test (SIT), captopril challenge test (CCT), fludrocortisone suppression test (FST) and oral sodium loading test (SLT) are recommended by the Endocrine Society's clinical practice guidelines to diagnose primary aldosteronism, but which one is the best remains controversial. We aimed to summarize the available comparative data and evaluate the diagnostic accuracy of these four tests.
We searched PubMed, Embase and the Cochrane Library for relevant studies published between January 1980 and January 2018.
Eligible studies reported on the accuracy of one or more of the four confirmatory tests in patients suspected of PA.
Two reviewers independently conducted the data extraction of all selected studies, which consisted of study characteristics and data to estimate the summary receiver operating characteristic (SROC) curve and the corresponding summary area under the curve (SAUC), pooled sensitivity and specificity, diagnostic odds ratios (DOR) with 95% confidence interval (CI).
We identified 26 articles including 3686 patients. 15 articles evaluated the diagnostic accuracy of CCT, 10 of SIT, 1 of FST, and none of SLT. For CCT, the SAUC was 0.9207, and the pooled sensitivity and specificity were 0.87 (95%CI 0.84‐0.89) and 0.84 (95%CI 0.81‐0.86), respectively. For SIT, the SAUC was 0.9232, and the pooled sensitivity and specificity were 0.85 (95%CI 0.82‐0.87) and 0.87 (95%CI 0.85‐0.89), respectively. For FST, the pooled sensitivity and specificity were 0.87 (95%CI 0.66‐0.97) and 0.95 (95%CI 0.82‐0.99), respectively. Overall, we found no significant differences in the diagnostic accuracy of CCT and SIT.
CCT and SIT exhibit high and comparable accuracy for diagnosing PA. CCT may be a more feasible alternative as it is safe and much easier to perform.
This article is protected by copyright. All rights reserved.
Growth hormone (GH) treatment of short healthy children is based on the belief that short stature is associated with psychosocial problems and a diminished quality of life.
To determine the impact of GH therapy on psychosocial well‐being and the ability of psychological metrics to define short stature‐related distress.
Sixty prepubertal boys with idiopathic short stature (age: 10.0±1.4yrs, height‐SDS: ‐2.38±0.3) were enrolled in this four‐year intervention study [one‐year double‐blinded, randomized, placebo‐controlled (GH/placebo‐2:1) and three‐year open‐labeled GH‐therapy]. Explicit (conscious/voluntary) psychological metrics [Pediatric Quality‐of‐Life Inventory (PedsQL), Silhouette Apperception Test (SAT), Rosenberg Self‐Esteem Scale (RSES), Child Behavior Checklist (CBCL)] and implicit (unconscious/involuntary) psychological metrics [Single‐Category Implicit‐Association‐Test for height (SC‐IAT‐H), Height Perception Picture Test (HPPT)]. Psychosocial evaluations were performed at study entry, after one and four years.
At study entry, PedsQL of boys with idiopathic short stature was lower than Israeli norms (P=.001). After one‐year blinded‐intervention only the GH‐treated boys improved their actual and anticipated adult height perception (SAT, P<.001 and P=.022) with reduced short stature‐related distress (SC‐IAT‐H, P<.001). At study end, RSES and SC‐IAT‐H improved significantly (P<.001), with no change in PedsQL and CBCL.
Our finding of improved psychosocial functioning only in the GH‐treated boys after one‐year blinded intervention suggests that it was the GH therapy, rather than being enrolled in a clinical trial, which contributed to the outcome. Long‐term open‐labeled GH‐treatment significantly improved height perception and self‐esteem. Future studies are needed to fully assess the relevance of complementing the routinely used explicit self‐report measures with the implicit measures.
This article is protected by copyright. All rights reserved.