Abstract
Background
Breast cancer is the most common malignancy in women, and it is also the leading cause of death in female patients; the most common pathological type of BC is infiltrating duct carcinoma (IDC). Some nomograms have been developed to predict bone metastasis (BM) in patients with breast cancer. However, there are no studies on diagnostic and prognostic nomograms for BM in newly diagnosed IDC patients.
Methods
IDC patients with newly diagnosed BM from 2010 to 2016 in the Surveillance, Epidemiology and End Results (SEER) database were reviewed. Multivariate logistic regression analysis was used to identify risk factors for BM in patients with IDC. Univariate and multivariate Cox proportional hazards regression analysis were used to explore the prognostic factors of BM in patients with IDC. We then constructed nomograms to predict the risk and prognosis of BM for patients with IDC. The results were validated using bootstrap resampling and retrospective research on 113 IDC patients with BM from 2015 to 2018 at the Affiliated Hospital of Chengde Medical University.
Results
This study included 141,959 patients diagnosed with IDC in the SEER database, of whom 2383 cases were IDC patients with BM. The risk factors for BM in patients with IDC included sex, primary site, grade, T stage, N stage, liver metastasis, race, brain metastasis, breast cancer subtype, lung metastasis, insurance status, and marital status. The independent prognostic factors were brain metastases, race, grade, surgery, chemotherapy, age, liver metastases, breast cancer subtype, insurance status, and marital status. Through calibration, receiver operating characteristic curve and decision curve analyses, we found that the nomogram for predicting the prognosis of IDC patients with BM displayed great performance both internally and externally.
Conclusion
These nomograms are expected to be a precise and personalized tool for predicting the risk and prognosis for BM in patients with IDC. This will help clinicians develop more rational and effective treatment strategies.