Ετικέτες

Δευτέρα 19 Δεκεμβρίου 2016

Cd inhibition and pH improvement via a nano-submicron mineral-based soil conditioner

Abstract

Cd contamination of rice in recent years has aroused a nationwide concern on the potential health risk to people in China. A significant increase of soil acidification in major Chinese croplands improves available Cd content by crops, and this further pushes a heavier burden on controlling Cd contamination. Therefore, it is urgent to find a workable and green way to control Cd contamination, i.e., decrease Cd content in rice, for people's health in China, as other countries in the world. From chemical and economic points, stabilizing/solidifying Cd may be a feasible way except in-situ ways such as removing it by the absorption of special plants and ex-situ ones such as removing the contaminated soil and treating it by special equipment. Then, it is very important how to choose a green solidifying agent. By simulating a rock-weathering process, a nano-submicron mineral-based soil conditioner (NSC) was prepared through environmentally friendly hydrothermal reaction. The application of NSC not only decreased Cd content in rice, i.e., inhibited Cd absorption, and increased pH of the soil, but also improved the content of healthy nutrients such as organic matter, available Ca, available K, available P, and available Si in the soil. The mechanism why NSC showed such good performance was also discussed in this study.



http://ift.tt/2i2DLuV

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αναζήτηση αυτού του ιστολογίου