Ετικέτες

Παρασκευή 27 Ιανουαρίου 2017

Compressed sensing based simultaneous black- and gray-blood carotid vessel wall MR imaging

S0730725X.gif

Publication date: May 2017
Source:Magnetic Resonance Imaging, Volume 38
Author(s): Bo Li, Hao Li, Hanjing Kong, Li Dong, Jue Zhang, Jing Fang
ObjectiveIn this study, we sought to demonstrate the blood suppression performance, image quality and morphological measurements for compressed sensing (CS) based simultaneous 3D black- and gray-blood imaging sequence (CS-siBLAG) in carotid vessel wall MR imaging.Materials and methodsSeven healthy volunteers and five patients were recruited. Healthy subjects underwent five CS-siBLAG scans with 1, 2, 3, 4 and 5-fold accelerations. Signal-to-tissue ratio (STR) and contrast-to-tissue ratio (CTR) were computed as the measures of flowing signal suppression performance and the image quality for black-blood imaging of the technique. Vessel lumen area (LA) and wall area (WA) were compared between fully sampled acquisition and each accelerated acquisition. Patients underwent three CS-siBLAG scans with 1, 3 and 5-fold accelerations as well as a 3D time of flight (3D TOF) scan. Two radiologists reviewed the under-sampled black- and gray-blood image quality.ResultsSTR and CTR values obtained with 2 to 5-fold accelerations were not significantly different from those with full acquisition. LA and WA measured at 2×, 3×, 4× and 5× were all highly correlated to the corresponding values at 1×. For patients imaging, two radiologists both found that the dual-contrast images at 3× acceleration exhibited comparable image quality to that of the fully sampled acquisition, and that the images at 5× exhibited slightly blurred vessel wall and outer vessel wall boundaries.ConclusionBy combining the CS under-sampling pattern and reconstruction, pseudo-centric phase encoding order and dual blood contrast sequences, this technique provides spatially registered black- and gray-blood images and excellent visualization for vessel wall imaging and gray-blood imaging in a short scan time.



http://ift.tt/2jY3C5h

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αναζήτηση αυτού του ιστολογίου