Ετικέτες

Τετάρτη 25 Ιανουαρίου 2017

Hygroscopic properties of urban aerosols and their cloud condensation nuclei activities measured in Seoul during the MAPS-Seoul campaign

S13522310.gif

Publication date: March 2017
Source:Atmospheric Environment, Volume 153
Author(s): Najin Kim, Minsu Park, Seong Soo Yum, Jong Sung Park, In Ho Song, Hye Jung Shin, Joon Young Ahn, Kyung-Hwan Kwak, Hwajin Kim, Gwi-Nam Bae, Gangwoong Lee
Aerosol physical properties, chemical compositions, hygroscopicity and cloud condensation nuclei (CCN) activities were measured in Seoul, the highly populated capital city of Korea, during the Megacity Air Pollution Studies (MAPS-Seoul) campaign, in May–June 2015. The average aerosol concentration for particle diameters >10 nm was 11787 ± 7421 cm−3 with dominant peaks at morning rush hours and in the afternoon due to frequent new particle formation (NPF) events. The average CCN concentration was 4075 ± 1812 cm−3 at 0.6% supersaturation, with little diurnal variation. The average hygroscopicity parameter (κ) value determined using a humidified tandem differential mobility analyzer (HTDMA) ranged 0.17–0.27 for a range of particle diameters (30–150 nm). The κ values derived using the aerosol mass spectrometer (AMS) data with three different methods were 0.32–0.34, significantly higher than those from HTDMA due to the uncertainties in the hygroscopicity values of different chemical compositions, especially organics and black carbon. Factors affecting the aerosol hygroscopicity seemed to be traffic and chemical processes during the NPF events. The CCN concentration predicted based on HTDMA κ data showed very good agreement with the measured one. Because of the overestimation of κ, CCN closure with the predicted CCN concentration based on AMS κ data over-predicted CCN concentration although the linear correlation between measured and predicted CCN concentration was still very good.



http://ift.tt/2khYmck

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αναζήτηση αυτού του ιστολογίου