Publication date: April 2017
Source:Biomedicine & Pharmacotherapy, Volume 88
Author(s): Gebremariam Birhanu, Hamid Akbari Javar, Ehsan Seyedjafari, Ali Zandi-Karimi
Pancreatic cancer (PC) is one of the most deadly and quickly fatal human cancers with a 5-year mortality rate close to 100%. Its prognosis is very poor, mainly because of its hostile biological behavior and late onset of symptoms for clinical diagnosis; these bring limitations on therapeutic interventions. Factors contributing for the difficulties in treating PC include: high rate of drug resistance, fast metastasis to different organs, poor prognosis and relapse of the tumor after therapy. After being approved by US FDA 1997, Gemcitabine (Gem) is the first line and the gold standard drug for all stages of advanced PC till now. However, its efficacy is unsatisfactory, mainly due to; its chemical instability and poor cellular uptake, resulting in an extremely short half-life and low bioavailability. To solve this drawbacks and increase the therapeutic outcome important progress has been achieved in the field of nanotechnology and offers a promising and effective alternative. This review mainly focus on the most commonly investigated nanoparticle (NP) delivery systems of Gem for PC treatment and the latest progresses achieved. Novel nanocarriers with better tumor targeting efficiencies and maximum treatment outcome to treat this deadly due are given much attention.
http://ift.tt/2jA7Y3X
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
Ετικέτες
Σάββατο 28 Ιανουαρίου 2017
Nanotechnology for delivery of gemcitabine to treat pancreatic cancer
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
-
Publication date: September 2017 Source: European Journal of Surgical Oncology (EJSO), Volume 43, Issue 9 http://ift.tt/2gezJ2D
-
Publication date: January–February 2018 Source: Materials Today, Volume 21, Issue 1 Author(s): David Bradley http://ift.tt/2BP...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου