Ετικέτες

Τετάρτη 25 Ιανουαρίου 2017

PINK1 Primes Parkin-Mediated Ubiquitination of PARIS in Dopaminergic Neuronal Survival

Publication date: 24 January 2017
Source:Cell Reports, Volume 18, Issue 4
Author(s): Yunjong Lee, Daniel A. Stevens, Sung-Ung Kang, Haisong Jiang, Yun-Il Lee, Han Seok Ko, Leslie A. Scarffe, George E. Umanah, Hojin Kang, Sangwoo Ham, Tae-In Kam, Kathleen Allen, Saurav Brahmachari, Jungwoo Wren Kim, Stewart Neifert, Seung Pil Yun, Fabienne C. Fiesel, Wolfdieter Springer, Valina L. Dawson, Joo-Ho Shin, Ted M. Dawson
Mutations in PTEN-induced putative kinase 1 (PINK1) and parkin cause autosomal-recessive Parkinson's disease through a common pathway involving mitochondrial quality control. Parkin inactivation leads to accumulation of the parkin interacting substrate (PARIS, ZNF746) that plays an important role in dopamine cell loss through repression of proliferator-activated receptor gamma coactivator-1-alpha (PGC-1α) promoter activity. Here, we show that PARIS links PINK1 and parkin in a common pathway that regulates dopaminergic neuron survival. PINK1 interacts with and phosphorylates serines 322 and 613 of PARIS to control its ubiquitination and clearance by parkin. PINK1 phosphorylation of PARIS alleviates PARIS toxicity, as well as repression of PGC-1α promoter activity. Conditional knockdown of PINK1 in adult mouse brains leads to a progressive loss of dopaminergic neurons in the substantia nigra that is dependent on PARIS. Altogether, these results uncover a function of PINK1 to direct parkin-PARIS-regulated PGC-1α expression and dopaminergic neuronal survival.

Graphical abstract

image

Teaser

Lee et al. demonstrate that PARIS is a common substrate of PINK1 and parkin. PINK1 phosphorylation of PARIS primes it for ubiquitination and clearance by parkin. Thus, dysfunction of either PINK1 or parkin converges on PARIS accumulation, which leads to PGC-1α repression and dopamine neuron loss.


http://ift.tt/2ktSIXV

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αναζήτηση αυτού του ιστολογίου