Ετικέτες

Πέμπτη 26 Ιανουαρίου 2017

Proteomic and peptidomic analysis of human sweat with emphasis on proteolysis

Publication date: 23 February 2017
Source:Journal of Proteomics, Volume 155
Author(s): Yijing Yu, Ioannis Prassas, Carla M.J. Muytjens, Eleftherios P. Diamandis
Sweat is produced by eccrine and apocrine glands and represents a biological fluid with established roles in thermo-regulation and host infection defense. The composition of sweat is highly dynamic and alters significantly in various skin and other disorders. Therefore, in-depth profiling of sweat protein composition is expected to augment our understanding of the pathobiology of several skin diseases and may lead to the identification of useful sweat-based disease biomarkers. We here reported an in-depth analysis of the human sweat proteome and peptidome. Sweat was collected from healthy males and healthy females of ages 20–60years, following strenuous exercise. Two sweat pools were prepared (1 for males and 1 for females) and were subjected to sample preparation for mass spectrometric analysis. We identified a total of 861 unique proteins during our proteomic analysis and 32,818 endogenous peptides (corresponding to additional 1067 proteins) from our peptidomics workflow. As expected, the human skin was identified as the most abundant source of sweat proteins and peptides. Several skin proteases and protease inhibitors were identified in human sweat, highlighting the intense proteolytic activity of human skin. The presence of several antimicrobial peptides supports the functional roles of sweat in host defense and innate immunity.SignificanceSweat is a skin-associated biological fluid, secreted by eccrine and apocrine glands, with essential function in body thermo-regulation and host infection defense. In the present study, we performed in-depth profiling of both sweat proteome and peptidome composition. Our data provide the most in-depth characterization of the skin's catalytic network present in sweat. For the first time, we brought to light novel peptides in human sweat that potentially have antimicrobial activity, which highlight the important role of this fluid in innate immunity. All these findings allow us to have a better understanding of the complex web of proteases in skin and may act as a platform for the future discovery of novel skin biomarkers.

Graphical abstract

image


http://ift.tt/2jk3U4n

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αναζήτηση αυτού του ιστολογίου