Publication date: Available online 20 January 2017
Source:Artificial Intelligence in Medicine
Author(s): Luca Anselma, Luca Piovesan, Paolo Terenziani
BackgroundClinical practice guidelines (CPGs) are assuming a major role in the medical area, to grant the quality of medical assistance, supporting physicians with evidence-based information of interventions in the treatment of single pathologies. The treatment of patients affected by multiple diseases (comorbid patients) is one of the main challenges for the modern healthcare. It requires the development of new methodologies, supporting physicians in the treatment of interactions between CPGs. Several approaches have started to face such a challenging problem. However, they suffer from a substantial limitation: they do not take into account the temporal dimension. Indeed, practically speaking, interactions occur in time. For instance, the effects of two actions taken from different guidelines may potentially conflict, but practical conflicts happen only if the times of execution of such actions are such that their effects overlap in time.ObjectivesWe aim at devising a methodology to detect and analyse interactions between CPGs that considers the temporal dimension.MethodsIn this paper, we first extend our previous ontological model to deal with the fact that actions, goals, effects and interactions occur in time, and to model both qualitative and quantitative temporal constraints between them. Then, we identify different application scenarios, and, for each of them, we propose different types of facilities for user physicians, useful to support the temporal detection of interactions.ResultsWe provide a modular approach in which different Artificial Intelligence temporal reasoning techniques, based on temporal constraint propagation, are widely exploited to provide users with such facilities. We applied our methodology to two cases of comorbidities, using simplified versions of CPGs.ConclusionWe propose an innovative approach to the detection and analysis of interactions between CPGs considering different sources of temporal information (CPGs, ontological knowledge and execution logs), which is the first one in the literature that takes into account the temporal issues, and accounts for different application scenarios.
http://ift.tt/2jImfwv
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
Ετικέτες
Παρασκευή 20 Ιανουαρίου 2017
Temporal detection and analysis of guideline interactions
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
-
Summary Insulinomas are rare neuroendocrine tumours that classically present with fasting hypoglycaemia. This case report discusses an un...
-
The online platform for Taylor & Francis Online content New for Canadian Journal of Remote Sen...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου