Publication date: 15 June 2017
Source:Biosensors and Bioelectronics, Volume 92
Author(s): Qiao Liu, Cheng Ma, Xing-Pei Liu, Yu-Pin Wei, Chang-Jie Mao, Jun-Jie Zhu
An ultrasensitive electrochemiluminescence (ECL) biosensor for the detection of microRNA was developed based on nicking enzymes Nb.BbvCI mediated signal amplification (NESA). First, the hairpin probe1-N-CQDs with assistant probe and microRNA (miRNA) formed Y junction structure which was cleaved with the addition of nicking enzymes Nb.BbvCI to release miRNA and assistant probe. Subsequently, the released miRNA and assistant probe can initiate the next recycling process. The generation of numerous intermediate sequences nitrogen doped carbon quantum dots-DNA (N-CQDs-DNA) can further hybridize with hairpin probe2 immobilized on GO/Au composite modified electrode surface, the initial ECL intensity was enhanced. The ECL intensity would increase with increasing concentration of the target miRNA, and the sensitivity of biosensor would be promoted because of the efficient signal amplification of the target induced cycling reaction. The novel designed biosensor provided a highly sensitive and selective detection of miRNA-21 from 10 aM to104 fM with a relatively low detection limit of 10 aM. Thus, our strategy has a potential application in the clinical diagnosis.
http://ift.tt/2mmgWB5
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
Ετικέτες
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
-
Summary Insulinomas are rare neuroendocrine tumours that classically present with fasting hypoglycaemia. This case report discusses an un...
-
The online platform for Taylor & Francis Online content New for Canadian Journal of Remote Sen...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου