Publication date: 15 August 2017
Source:Biosensors and Bioelectronics, Volume 94
Author(s): Huatang Zhang, Ling Feng, Yin Jiang, Yin-Ting Wong, Yonghe He, Guansheng Zheng, Jun He, Yi Tan, Hongyan Sun, Derek Ho
Copper (II) is one of the most of important cofactors for numerous enzymes and has captured broad attention due to its role as a neurotransmitters for physiological and pathological functions. In this article, we present a reaction-based fluorescent sensor for Cu2+ detection (NIR-Cu) with near-infrared excitation and emission, including probe design, structure characterization, optical property test and biological imaging application. NIR-Cu is equipped with a functional group, 2-picolinic ester, which hydrolyzes in the presence of Cu2+ with high selectivity over completed cations. With the experimental conditions optimized, NIR-Cu (5μM) exhibits linear response for Cu2+ range from 0.1 to 5μM, with a detection limit of 29nM. NIR-Cu also shows excellent water solubility and are highly responsive, both desirable properties for Cu2+ detection in water samples. In addition, due to its near-infrared excitation and emission properties, NIR-Cu demonstrates outstanding fluorescent imaging in living cells and tissues.
http://ift.tt/2mmWB1Y
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
Ετικέτες
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
-
Summary Insulinomas are rare neuroendocrine tumours that classically present with fasting hypoglycaemia. This case report discusses an un...
-
The online platform for Taylor & Francis Online content New for Canadian Journal of Remote Sen...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου