Publication date: 15 June 2017
Source:Biosensors and Bioelectronics, Volume 92
Author(s): Xiaomin Yang, Xin Li, Lizhi Zhang, Jingming Gong
Triphenyl Phosphate (TPhP), as a typical model of organophosphorus flame retardants (OPFRs), has been regarded as emerging environmental contaminants of health concern. In this study, a rapid and highly sensitive visible-light-response PEC sensor has been developed for the detection of Triphenyl Phosphate (TPhP) using electrospun template directed molecularly imprinted nanofibers modified BiOI nanoflake arrays (BiOINFs) as a photoactive electrode. The molecularly imprinted electrospun nanofibers (labeled as MI-ESNFs) were carefully characterized by scanning electron microscopy (SEM), UV spectra, FTIR spectra measurements and various electrochemical techniques. Under the optimized experimental conditions, the photoelectrochemical response was linearly proportional to the logarithm value of TPhP concentrations in the range of 0.01ngmL−1 to 500ngmL−1. Meanwhile, the sensor exhibited high selectivity and stability.
http://ift.tt/2kpJUkQ
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
Ετικέτες
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
-
Summary Insulinomas are rare neuroendocrine tumours that classically present with fasting hypoglycaemia. This case report discusses an un...
-
The online platform for Taylor & Francis Online content New for Canadian Journal of Remote Sen...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου