Publication date: Available online 12 February 2017
Source:Seminars in Cancer Biology
Author(s): Matthew J. Gdovin, Nuha Kadri, Lourdes Rios, Steven Holliday, Zachary Jordan
Cancer cells utilize an array of proton transporters to regulate intra- and extracellular pH to thrive in hypoxic conditions, and to increase tumor growth and metastasis. Efforts to target many of the transporters involved in cancer cell pH regulation have yielded promising results, however, many productive attempts to disrupt pH regulation appear to be non-specific to cancer cells, and more effective in some cancer cells than others. Following a review of the status of photodynamic cancer therapy, a novel light-activated process is presented which creates very focal, rapid, and significant decreases in only intracellular pH (pHi), leading to cell death. The light-activation of the H+ carrier, nitrobenzaldehyde, has been effective at initiating pH-induced apoptosis in non-cancerous and numerous cancerous cell lines in vitro, to include breast, prostate, and pancreatic cancers. Also, this intracellular acidification technique caused significant reductions in tumor growth rate and enhanced survival in mice bearing triple negative breast cancer tumors. The efficacy of an NBA-upconverting nanoparticle to kill breast cancer cells in vitro is described, as well as a discussion of the potential intracellular mechanisms underlying the pH-induced apoptosis.
http://ift.tt/2kiSmUx
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
Ετικέτες
Δευτέρα 13 Φεβρουαρίου 2017
Focal photodynamic intracellular acidification as a cancer therapeutic
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
-
Summary Insulinomas are rare neuroendocrine tumours that classically present with fasting hypoglycaemia. This case report discusses an un...
-
The online platform for Taylor & Francis Online content New for Canadian Journal of Remote Sen...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου