Publication date: Available online 17 March 2017
Source:Radiotherapy and Oncology
Author(s): Yenny Z. Szeto, Marnix G. Witte, Marcel van Herk, Jan-Jakob Sonke
PurposeTo develop a population based statistical model of the systematic interfraction geometric variations between the planning CT and first treatment week of lung cancer patients for inclusion as uncertainty term in future probabilistic planning.Materials and methodsDeformable image registrations between the planning CT and first week CBCTs of 235 lung cancer patients were used to generate deformation vector fields (DVFs) representing the geometric variations of lung cancer patients. Using a second deformable registration step, the average DVF per patient was mapped to an average patient CT. Subsequently, the dominant modes of systematic geometric variations were extracted using Principal Component Analysis (PCA). For evaluation a leave-one-out cross-validation was performed.ResultsThe first three PCA components mainly described cranial–caudal, anterior–posterior, and left–right variations, respectively. Fifty and 112 components were needed to describe correspondingly 75% and 90% of the variance. An overall systematic variation of 3.6mm SD was observed and could be described with an accuracy of about 1.0mm with the PCA model.ConclusionsA PCA based model for systematic geometric variations in the thorax was developed, and its accuracy determined. Such a model can serve as a basis for probability based treatment planning in lung cancer patients.
http://ift.tt/2nA4X78
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
Ετικέτες
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
-
Summary Insulinomas are rare neuroendocrine tumours that classically present with fasting hypoglycaemia. This case report discusses an un...
-
The online platform for Taylor & Francis Online content New for Canadian Journal of Remote Sen...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου