Ετικέτες

Τρίτη 7 Μαρτίου 2017

Development of structure–property relationships that allow independent control of glass transition temperature, melting temperature, and rheology in a library of bio-based succinate polyester polyols

Publication date: 7 April 2017
Source:Polymer, Volume 114
Author(s): Alan K. Schrock, Heather S.C. Hamilton, Baylen D. Thompson, Kenneth Ulrich, Cathlene del Rosario, Carl Jacky Saint-Louis, William D. Coggio
A library of 20 bio-based succinate (SA) diol, co-diol, and co-diacid polyester polyols (PESPs) was generated and characterized, giving detailed understanding for tuning of their thermal transitions and rheological parameters. SA and 1,3-propanediol, 1,4-butanediol (BDO), 1,6-hexanediol, 2,2-dimethyl-1,3-propanediol, 3-methyl-1,5-pentanediol, diethylene glycol (DEG), adipic acid, or sebacic acid, and the blended diols were oligomerized to 1000 and 2000 Da Mn. The SA PESP melting point and its ability to crystallize can be set by controlling the structures and ratios of co-diols or co-diacids. We also show that the PESPs follow the expected Arrhenius temperature–viscosity relationship, but with a clear break in activation energy between PESPs with and without pendent methyl substituents and with DEG. PESP glass transition temperature, melting points, and rheology can be controlled independently by use of co-monomers with and without pendent methyl groups and with DEG.

Graphical abstract

image


http://ift.tt/2mVN1TU

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αναζήτηση αυτού του ιστολογίου