Ετικέτες

Τετάρτη 29 Μαρτίου 2017

Glucagon-like petide-2 acts on colon cancer myofibroblasts to stimulate proliferation, migration and invasion of both myofibroblasts and cancer cells via the IGF pathway

S01969781.gif

Publication date: Available online 29 March 2017
Source:Peptides
Author(s): Marianne Shawe-Taylor, J. Dinesh Kumar, Whitney Holden, Steven Dodd, Akos Varga, Olivier Giger, Andrea Varro, Graham J. Dockray
Glucagon-like peptide (GLP)-2 stimulates intestinal epithelial proliferation by acting, in part, via IGF release from sub-epithelial myofibroblasts. The response of myofibroblasts to GLP-2 remains incompletely understood. We studied the action of GLP-2 on myofibroblasts from colon cancer and adjacent tissue, and the effects of conditioned medium from these cells on epithelial cell proliferation, migration and invasion. GLP-2 stimulated proliferation, migration and invasion of myofibroblasts and the proliferative and invasive responses of cancer-associated myofibroblasts were greater than those of myofibroblasts from adjacent tissue. The responses were inhibited by an IGF receptor inhibitor, AG1024. Conditioned medium from GLP-2 treated myofibroblasts increased proliferation, migration and invasion of SW480, HT29, LoVo epithelial cells and these responses were inhibited by AG1024; GLP-2 alone had no effect on these cells. In addition, when myofibroblasts and epithelial cells were co-cultured in Ibidi chambers there was mutual stimulation of migration in response to GLP-2. The latter increased both IGF-1 and IGF-2 transcript abundance in myofibroblasts. Moreover, a number of IGF binding proteins (IGFBP-4, −5, −7) were identified in myofibroblast medium; in the presence of GLP-2 there was increased abundance of the cleavage products of IGBBP-4 and IGFBP-5 suggesting activation of a degradation mechanism that might increase IGF bioavailability. The data suggest that GLP-2 stimulates cancer myofibroblast proliferation, migration and invasion; GLP-2 acts indirectly on epithelial cells partly via increased IGF expression in myofibroblasts and partly, perhaps, by increased bioavailability through degradation of IGFBPs.



http://ift.tt/2oaVlzZ

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αναζήτηση αυτού του ιστολογίου