Publication date: May 2017
Source:Biomaterials, Volume 127
Author(s): Bella B. Manshian, Julio Jiménez, Uwe Himmelreich, Stefaan J. Soenen
Tumor therapy using nanoparticles (NPs) is mainly aimed at using the NPs as carriers for therapeutic drugs or as mediators for external stimuli to generate heat. Recent studies have shown that the toxicity of NPs can also be specifically exploited to kill cancer cells. In the present work, we employ core-only CdTe quantum dots and study their cytotoxicity using a validated high-content screening approach. The data revealed a clear correlation between toxicity and quantum dot degradation, which could be monitored through loss of fluorescence intensity. Based on the in vitro data obtained, the in vivo dose was calculated relative to the estimated number of tumor cells based on luminescence measurements. The obtained results show a clear increase in reproducibility of the therapeutic effect compared to normal conditions, where a set dose of quantum dots was administered regardless of the tumor size. The therapeutic delivery could also be monitored in vivo, where the loss of fluorescence intensity correlated with the anticancer efficacy. The present work highlights the benefits of noninvasive imaging to monitor therapeutic delivery and to optimize treatment via personalized medicine.
http://ift.tt/2mvBY39
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
Ετικέτες
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
-
Summary Insulinomas are rare neuroendocrine tumours that classically present with fasting hypoglycaemia. This case report discusses an un...
-
The online platform for Taylor & Francis Online content New for Canadian Journal of Remote Sen...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου