Publication date: 15 August 2017
Source:Biosensors and Bioelectronics, Volume 94
Author(s): Tianxiang Wei, Dan Du, Zhaoyin Wang, Weiwei Zhang, Yuehe Lin, Zhihui Dai
MicroRNAs (miRNAs) play important roles in gene regulation and cancer development. Nowadays, it is still a challenge to detect low-abundance miRNAs. Here, we present a magnetic fluorescent miRNA sensing system for the rapid and sensitive detection of miRNAs from cell lysates and serum samples. In this system, albumin nanoparticles (Alb NPs) were prepared from inherent biocompatible bovine serum albumin (BSA). A large number of fluorescent dyes were loaded into Alb NPs to make Alb NPs serve as signal molecular nanocarriers for signal amplification. Benefited from the reactive functional groups-carboxyl groups of Alb NPs, p19 protein, a viral protein that can bind and sequester short RNA duplex effectively and selectively, was modified successfully to the surface of the fluorescent dyes-loaded Alb NPs, thus enabling the probe:target miRNA duplex recognition and binding. Followed by the introduction of gold nanoparticles coated magnetic microbeads (Au NPs-MBs), which were prepared through a novel and simple method, the system combined the merits of the rapid and efficient collection given by MBs with the good affinities to attach probe molecules endowed by the coated gold layer. A broad linear detection range of 10fM–10nM and a low detection limit of 9fM were obtained within 100min by detecting a model target miRNA-21. The feasibility of this method for rapid and sensitive quantification might advance the use of miRNAs as biomarkers in clinical praxis significantly.
Graphical abstract
http://ift.tt/2lpPCR2
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου