Ετικέτες

Δευτέρα 27 Μαρτίου 2017

The relative risk and its distribution of endocrine disrupting chemicals, pharmaceuticals and personal care products to freshwater organisms in the Bohai Rim, China

Publication date: 15 July 2017
Source:Science of The Total Environment, Volumes 590–591
Author(s): Meng Zhang, Yajuan Shi, Yonglong Lu, Andrew C. Johnson, Suriyanarayanan Sarvajayakesavalu, Zhaoyang Liu, Chao Su, Yueqing Zhang, Monika D. Juergens, Xiaowei Jin
In this study, the risks to aquatic organisms posed by 12 commonly detected pharmaceuticals and personal care products (PPCPs) and endocrine disrupting chemicals (EDCs) that are extensively used in Bohai coastal region of China were examined. These were linear alkylbenzene sulfonate (LAS), nonylphenol (NP), diethylhexyl phthalate (DEHP), norfloxacin (NOR), sulfamethoxazole (SMX), erythromycin (ERY), bisphenol A (BPA), ofloxacin (OFL), carbamazepine (CBZ), naproxen (NPX), atenolol (ATL) and metoprolol (MET). Their relative risk was ranked based on the proximity between the medians of the reported effect concentrations and measured river or lake water concentrations. The surfactants (LAS) and endocrine disrupting chemicals NP (a breakdown product of the surfactant nonylphenol polyethoxylate) and DEHP (a plasticizer) were identified as posing the greatest risk from this range of chemicals. LAS had a hundred-fold higher risk than any of the pharmaceuticals. The highest risk ranked pharmaceuticals were all antibiotics. Zinc (Zn) and mercury (Hg) were added to the comparison as representative heavy metals. Zn posed a risk higher than all the organics. The risk posed by Hg was less than the surfactants but greater than the selected pharmaceuticals. Whereas LAS and DEHP could cause harmful effects to all the wildlife groups, NP and BPA posed the greatest risk to fish. Antibiotics showed the highest risk to algae. Spatial and temporal distributions of PPCPs and EDCs were conducted for risk identification, source analysis and seasonal change exploration. Municipal sewage effluent linked to urban areas was considered to be the major source of pharmaceuticals. With regard to seasonal influence the risk posed by LAS to the aquatic organisms was significantly affected by wet and dry seasonal change. The dilution effects were the common feature of LAS and ERY risks. The difference in LAS and ERY risk patterns along the rivers was mainly affected by the elimination process.

Graphical abstract

image


http://ift.tt/2mKNNDB

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αναζήτηση αυτού του ιστολογίου