Ετικέτες

Πέμπτη 13 Απριλίου 2017

Effect of corticision on orthodontic tooth movement in a rat model as assessed by RNA sequencing

Abstract

Corticision is a common technique to accelerate orthodontic tooth movement; however, not much is known about the underlying mechanisms. In this study, we investigated the mechanism of alveolar tissue remodeling after corticision in a rat model of tooth movement (TM) by analyzing the differential transcriptome. A total of 36 male rats were equally divided into TM and TM with corticision (TM+C) groups. Alveolar bone response was examined using micro-computed tomography (micro-CT). Osteoclasts and osteoblasts were quantified on tartrate-resistant acid phosphatase (TRAP) and Goldner's trichrome staining. The transcriptomes of alveolus around the left maxillary first molar were determined on RNA sequencing (RNA-Seq), and the expression of selected differentially expressed genes (DEGs) validated on quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR). Immunohistochemical examination of alveolar tissue was performed to examine the expressions of correlative proteins of the selected signaling pathway in the TM and TM+C groups. The ratio of bone volume to total volume (BV/TV), and the trabecular number (Tb.N) were significantly decreased, while the movement distance and the trabecular separation (Tb.Sp) was significantly increased in the TM+C group. However, no significant between-group difference in trabecular thickness (Tb.Th) was observed. On histomorphometric analysis, a significant increase in the number of osteoclasts and increased bone resorption was observed in the TM+C group. A total of 399 DEGs were identified on RNA-SEq. Eleven selected genes were confirmed on qRT-PCR, which included components of the Ras signaling pathway. Four proteins of the Ras signaling pathway showed a higher expression in the TM+C group. Our findings indicate that corticision may speed up orthodontic tooth movement by accelerating osteoclastogenesis mediated via the Ras signaling pathway.



http://ift.tt/2p18jRh

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αναζήτηση αυτού του ιστολογίου