Publication date: 11 April 2017
Source:Cell Reports, Volume 19, Issue 2
Author(s): Bradley J. Walters, Emily Coak, Jennifer Dearman, Grace Bailey, Tetsuji Yamashita, Bryan Kuo, Jian Zuo
Hearing loss is widespread and persistent because mature mammalian auditory hair cells (HCs) are nonregenerative. In mice, the ability to regenerate HCs from surrounding supporting cells (SCs) declines abruptly after postnatal maturation. We find that combining p27Kip1 deletion with ectopic ATOH1 expression surmounts this age-related decline, leading to conversion of SCs to HCs in mature mouse cochleae and after noise damage. p27Kip1 deletion, independent of canonical effects on Rb-family proteins, upregulated GATA3, a co-factor for ATOH1 that is lost from SCs with age. Co-activation of GATA3 or POU4F3 and ATOH1 promoted conversion of SCs to HCs in adult mice. Activation of POU4F3 alone also converted mature SCs to HCs in vivo. These data illuminate a genetic pathway that initiates auditory HC regeneration and suggest p27Kip1, GATA3, and POU4F3 as additional therapeutic targets for ATOH1-mediated HC regeneration.
Graphical abstract
Teaser
Auditory hair cells are nonregenerative, resulting in persistent hearing loss upon damage. Walters et al. find that manipulating two genes, p27Kip1 and Atoh1, induces the conversion of nonsensory cells to hair cells in adult mice. This effect is mediated by GATA3 and POU4F3, where POU4F3 alone was found to convert nonsensory cells.http://ift.tt/2o60yo2
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου