Ετικέτες

Τρίτη 4 Απριλίου 2017

Silk I and Silk II Studied by Fast Scanning Calorimetry

Publication date: Available online 5 April 2017
Source:Acta Biomaterialia
Author(s): Peggy Cebe, Benjamin P. Partlow, David L. Kaplan, Andreas Wurm, Evgeny Zhuravlev, Christoph Schick
Using fast scanning calorimetry (FSC), we investigated the glass transition and crystal melting of samples of B. mori silk fibroin containing Silk I and/or Silk II crystals. Due to the very short residence times at high temperatures during such measurements, thermal decomposition of silk protein can be significantly suppressed. FSC was performed at 2000 K/s using the Mettler Flash DSC1 on fibroin films with masses around 130-270 ng. Films were prepared with different crystalline fractions (ranging from 0.26 to 0.50) and with different crystal structures (Silk I, Silk II, or mixed) by varying the processing conditions. These included water annealing at different temperatures, exposure to 50% MeOH in water, or autoclaving. The resulting crystal structure was examined using wide angle X-ray scattering. Degree of crystallinity was evaluated from Fourier transform infrared (FTIR) spectroscopy and from analysis of the heat capacity increment at the glass transition temperature. Silk fibroin films prepared by water annealing at 25 °C were the least crystalline and had Silk I structure. FTIR and FSC studies showed that films prepared by autoclaving or 50% MeOH exposure were the most crystalline and had Silk II structure. Intermediate crystalline fraction and mixed Silk I/Silk II structures were found in films prepared by water annealing at 37 °C. FSC results indicate that Silk II crystals exhibit endotherms of narrower width and have higher mean melting temperature Tm(II) = 351 ± 2.6 °C, compared to Silk I crystals which melt at Tm(I) = 292 ± 3.8 °C. Films containing mixed Silk I/Silk II structure showed two clearly separated endothermic peaks. Evidence suggests that the two types of crystals melt separately and do not thermally interconvert on the extremely short time scale (0.065 s between onset and end of melting) of the FSC experiment.Statement of significanceSilkworm silk is a naturally occurring biomaterial. The fibroin component of silk forms two types of crystals. Silk properties depend upon the amount and type of crystals, and their stability. One measure of stability is crystal melting temperature. Crystals which are more stable have a higher melting temperature. Until now, it has been challenging to study thermal behavior of silk crystals because they degrade at high temperature. To avoid degradation, and study the melting properties of silk biomaterial, we heated silk at a very fast rate of 2000 K/s using a special calorimeter. We have shown that the two crystal types have very different melting temperatures, indicating that one crystal type is much more stable than the other.

Graphical abstract

image


http://ift.tt/2o7QU8a

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αναζήτηση αυτού του ιστολογίου