Publication date: Available online 13 April 2017
Source:Molecular and Cellular Endocrinology
Author(s): Francesca Silvagno, Gianpiero Pescarmona
Transcriptional control and modulation of calcium fluxes underpin the differentiating properties of vitamin D (1,25(OH)2D3). In the latest years however few studies have pointed out the relevance of the mitochondrial effects of the hormone. It is now time to focus on the metabolic results of vitamin D receptor (VDR) action in mitochondria, which can explain the pleiotropic effects of 1,25(OH)2D3 and may elucidate few contrasting aspects of its activity. The perturbation of lipid metabolism described in VDR knockout mice and vitamin D deficient animals can be revisited based on the newly identified mechanism of action of 1,25(OH)2D3 in mitochondria. From the same point of view, the controversial role of 1,25(OH)2D3 in adipogenesis can be better interpreted.
http://ift.tt/2nNLal1
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
Ετικέτες
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
-
Summary Insulinomas are rare neuroendocrine tumours that classically present with fasting hypoglycaemia. This case report discusses an un...
-
The online platform for Taylor & Francis Online content New for Canadian Journal of Remote Sen...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου