Publication date: July 2017
Source:Atmospheric Environment, Volume 160
Author(s): Konstantin Y. Vinnikov, Russell R. Dickerson, Nickolay A. Krotkov, Eric S. Edgerton, James J. Schwab
This paper introduces a new parameter to characterize the random component in temporal variability of atmospheric pollutants and proposes a simple statistical technique for its evaluation. That parameter is the net decay time (or the time scale) of the local anomalies in concentrations of atmospheric pollutants, rather than the traditionally used chemical lifetimes of total amounts of the species. Using widely available data of hourly multi-year surface trace gas pollutant concentrations we demonstrate a simplified way to estimate the net decay time with an exponential approximation of lag-correlation functions. We assessed the decay times of fluctuations in observations of eight atmospheric pollutants (SO2, NO, NO2, NOy, O3, CO, NH3, and HNO3) at two urban sites and one cleaner rural site in the Eastern US. The time scales of temporal fluctuations (net decay times) vary from about one hour to slightly more than one day. These scales are generally much shorter in urban environments than in remote regions. We also compared day- and night-time observations in warm and cold seasons. At night in the cold season, time scales of fluctuations in atmospheric pollutants are usually the longest. Such estimates should be useful to air quality prediction, public health, and satellite remote sensing research communities.
http://ift.tt/2oD8joR
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
Ετικέτες
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
-
Summary Insulinomas are rare neuroendocrine tumours that classically present with fasting hypoglycaemia. This case report discusses an un...
-
The online platform for Taylor & Francis Online content New for Canadian Journal of Remote Sen...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου