Publication date: 15 October 2017
Source:Biosensors and Bioelectronics, Volume 96
Author(s): Zepeng Kang, Kailong Jiao, Xinping Xu, Ruiyun Peng, Shuqiang Jiao, Zongqian Hu
A three-dimensional architecture of PANI@GO hybrid was synthesized via in-situ polymerization of aniline monomers on the surface of graphene oxide (GO) and carbonized at 1600°C. The SEM images showed that surfaces of planar GO were covered by a compact nanofiber-like polyaniline (PANI) layer which presented an interconnected network. Nanofiber-like PANI on the GO surface was mostly preserved and became the carbon nanofibers (CNFs) after carbonization. The TEM images showed that the carbonized PANI grew seamlessly on the GO surface and served as conductive "network" between interlayers of GO. The carbonized PANI@GO hybrid was used to modify a glassy carbon electrode (GCE) based on GOx, resulting in efficient direct electron transfer (DET) and excellent bio-catalytic performance. In addition, a glucose/O2 fuel cell constructed using Nafion/GOx/PANI1600@GO/GCE as the anode and an E-TEK Pt/C modified GCE as the cathode generated a maximum power density of 0.756mWcm−2 at 0.42V. Findings in this study may be helpful for exploiting novel materials for immobilization of enzymes through carbonizing conducting polymers or their composites with inorganic materials at high temperature for applications in enzymatic biofuel cells or biosensors.
http://ift.tt/2rEiU2k
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
Ετικέτες
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
-
Summary Insulinomas are rare neuroendocrine tumours that classically present with fasting hypoglycaemia. This case report discusses an un...
-
The online platform for Taylor & Francis Online content New for Canadian Journal of Remote Sen...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου