Publication date: Available online 12 May 2017
Source:DNA Repair
Author(s): Rubén Torres, Hector Romero, Violeta Rodríguez-Cerrato, Juan C. Alonso
Bacillus subtilis AddAB, RecS, RecQ, PcrA, HelD, DinG, RecG, RuvAB, PriA and RecD2 are genuine recombinational repair enzymes, but the biological role of RecD2 is poorly defined. A ΔrecD2 mutation sensitizes cells to DNA-damaging agents that stall or collapse replication forks. We found that this ΔrecD2 mutation impaired growth, and that a mutation in the pcrA gene (pcrA596) relieved this phenotype. The ΔrecD2 mutation was not epistatic to ΔaddAB, ΔrecQ, ΔrecS, ΔhelD, pcrA596 and ΔdinG, but epistatic to recA. Specific RecD2 degradation caused unviability in the absence of RecG or RuvAB, but not on cells lacking RecU. These findings show that there is notable interplay between RecD2 and RecG or RuvAB at arrested replication forks, rather than involvement in processing Holliday junctions during canonical double strand break repair. We propose that there is a trade-off for efficient genome duplication, and that recombinational DNA helicases directly or indirectly provide the cell with the means to tolerate chromosome segregation failures.
Graphical abstract
http://ift.tt/2r3rt9D
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου