Ετικέτες

Τετάρτη 24 Μαΐου 2017

Recombinant human bone morphogenetic protein (rhBMP)9 induces osteoblast differentiation when combined with demineralized freeze-dried bone allografts (DFDBAs) or biphasic calcium phosphate (BCP)

Abstract

Objectives

Recently, recombinant human bone morphogenetic protein 9 (rhBMP9) has been characterized as one of the most osteogenic growth factors among the 15 human BMPs. The aim of the present study was to investigate the effects of rhBMP9 in comparison to the clinically utilized rhBMP2 on in vitro cell behavior when combined with two bone graft materials including demineralized freeze-dried bone allografts (DFDBAs) and biphasic calcium phosphate (BCP).

Materials and methods

The absorption and release kinetics of rhBMPs from DFDBA and BCP were investigated by ELISA. Moreover, murine bone stromal ST2 cell behavior was investigated on DFDBA or BCP seeded on (1) graft only, (2) rhBMP2 (10 ng/ml), (3) rhBMP2 (100 ng/ml), (4) rhBMP9 (10 ng/ml), and (5) rhBMP9 (100 ng/ml). The effects of rhBMPs on DFDBA and BCP were assessed for cell adhesion, proliferation, and osteoblast differentiation by alkaline phosphatase (ALP) activity, alizarin red staining, and real-time PCR for genes encoding Runx2, ALP, and bone sialoprotein (BSP).

Results

While both BMPs were gradually released from DFDBA and BCP over time, significantly higher adsorption was observed on BCP when compared to DFDBA. Cell attachment and proliferation was higher on BCP with little influence of either rhBMP2/9. Despite rhBMPs having relatively no effect on cell attachment/proliferation, a pronounced and marked effect was observed on osteoblast differentiation for both rhBMP2/9. Interestingly, it was observed that rhBMP9 induced significantly higher ALP activity, alizarin red staining, and messenger RNA (mRNA) levels of ALP and BSP when compared to rhBMP2. Our results also revealed higher differentiation for rhBMP2/9 with BCP when compared to DFDBA most likely as a result of higher growth factor adsorption.

Conclusion

While both rhBMP2/9 combined with DFDBA or BCP induced osteoblast differentiation, rhBMP9 induced greater osteoblast differentiation when compared to rhBMP2.

Clinical relevance

rhBMP9 may be a recombinant growth factor with higher potential to induce new bone formation when compared to rhBMP2. Further in vivo studies are necessary to characterize its regenerative potential in various animal models.



http://ift.tt/2rPkxKU

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αναζήτηση αυτού του ιστολογίου