Publication date: 15 December 2017
Source:Biosensors and Bioelectronics, Volume 98
Author(s): Cristian Sevcencu, Thomas N. Nielsen, Johannes J. Struijk
A novel therapeutic approach for treating resistant hypertension could be the use of bioelectronic medicines to achieve blood pressure (BP) control in implanted patients by closed-loop stimulation of the left vagus nerve (LVN). However, such a technology would require an implantable BP marker, which is not available yet. As it is known that the LVN conducts afferent BP-related signals, this study aimed to investigate if such signals could be recorded with implantable means and used to derive BP markers. The present experiments were performed in anesthetized pigs subjected to a transient or stable BP increase induced by adrenaline administration. The LVN signals recorded with cuff electrodes and the BP waves recorded with carotid catheters were ensemble averaged relative to the R-peaks of the electrocardiogram. Through this procedure, afferent BP-related neural profiles (BPnPs) were derived from the LVN signals. As the BPnPs represented accurate copies of the BP waves, the timing parameters of both waveforms were almost the same and the BPnP amplitude increased linearly with the diastolic, systolic and mean BP. These results indicate that the BPnPs comprise accurate BP information and that the BPnP amplitude could serve as a BP marker in implantable systems.
http://ift.tt/2spwvNF
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
Ετικέτες
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
-
Summary Insulinomas are rare neuroendocrine tumours that classically present with fasting hypoglycaemia. This case report discusses an un...
-
The online platform for Taylor & Francis Online content New for Canadian Journal of Remote Sen...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου