Publication date: Available online 1 June 2017
Source:Molecular and Cellular Endocrinology
Author(s): Xiaoying Cui, Helen Gooch, Alice Petty, John J. McGrath, Darryl Eyles
1,25(OH)2D3 (vitamin D) is well-recognized as a neurosteroid that modulates multiple brain functions. A growing body of evidence indicates that vitamin D plays a pivotal role in brain development, neurotransmission, neuroprotection and immunomodulation. However, the precise molecular mechanisms by which vitamin D exerts these functions in the brain is still unclear. Vitamin D signalling occurs via the vitamin D receptor (VDR), a zinc-finger protein in the nuclear receptor superfamily. Like other nuclear steroids, vitamin D has both genomic and non-genomic actions. The transcriptional activity of vitamin D occurs via the nuclear VDR. Its faster, non-genomic actions can occur when the VDR is distributed outside the nucleus. The VDR is present in the developing and adult brain where it mediates the effects of vitamin D on brain development and function. The purpose of this review is to summarise the in vitro and in vivo work that has been conducted to characterise the genomic and non-genomic actions of vitamin D in the brain. Additionally we link these processes to functional neurochemical and behavioural outcomes. Elucidation of the precise molecular mechanisms underpinning vitamin D signalling in the brain may prove useful in understanding the role this steroid plays in brain ontogeny and function.
http://ift.tt/2ri6SO8
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
Ετικέτες
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
-
Summary Insulinomas are rare neuroendocrine tumours that classically present with fasting hypoglycaemia. This case report discusses an un...
-
The online platform for Taylor & Francis Online content New for Canadian Journal of Remote Sen...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου