Publication date: 15 December 2017
Source:Biosensors and Bioelectronics, Volume 98
Author(s): Jiexia Chen, Guang-Chao Zhao
A signal-on photoelectrochemical (PEC) immunosensor was constructed for detecting tumor marker in this work. α-fetoprotein (AFP) was chosen as a model analyte to investigate the prepared procedure and the analytical performance of the exploited sensor. In order to construct the sensor, CdSe QDs were used as photoactive material, biotin conjugated AFP antibody (Bio-anti-AFP) as detecting probe, streptavidin (SA) as signal capturing unit, biotin functionalized apoferritin encapsulated ascorbic acid (Bio-APOAA) as amplification unit, which were assembled onto the electrodes. The sensing strategy was based on in situ enzymatic hydrolysis of Bio-APOAA to release ascorbic acid (AA) as sacrificial electron donor to produce photocurrent. The photocurrent from the immunosensor was monitored as a result of AFP concentrations. The constructed sensing platform displayed high selectivity and good sensitivity for detecting AFP. Under optimal conditions, a wide linear range from 0.001 to 1000ng/mL and a low detection limit of 0.31pg/mL were obtained. The developed immunosensor is expected to be used to determine AFP and other tumor markers in human plasma in clinical laboratories either for pre-cancer screening or cancer monitoring. Moreover, this sensing platform further has the potential to use for the detection of trypsin activity and the corresponding inhibitor-screening.
http://ift.tt/2u7JzWy
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
Ετικέτες
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
-
Summary Insulinomas are rare neuroendocrine tumours that classically present with fasting hypoglycaemia. This case report discusses an un...
-
The online platform for Taylor & Francis Online content New for Canadian Journal of Remote Sen...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου