Ετικέτες

Πέμπτη 13 Ιουλίου 2017

An approach to study ultrastructural changes and adaptive strategies displayed by Acinetobacter guillouiae SFC 500-1A under simultaneous Cr(VI) and phenol treatment

Abstract

Acinetobacter guillouiae SFC 500-1A, a native bacterial strain isolated from tannery sediments, is able to simultaneously remove high concentrations of Cr(VI) and phenol. In this complementary study, high-resolution microscopy techniques, such as atomic force microscopy (AFM) and transmission electron microscopy (TEM), were used to improve our understanding of some bacterial adaptive mechanisms that enhance their ability to survive. AFM contributed in gaining insight into changes in bacterial size and morphology. It allowed the unambiguous identification of pollutant-induced cellular disturbances and the visualization of bacterial cells with depth sensitivity. TEM analysis revealed that Cr(VI) produced changes mainly at the intracellular level, whereas phenol produced alterations at the membrane level. This strain tended to form more extensive biofilms after phenol treatment, which was consistent with microscopy images and the production of exopolysaccharides (EPSs). In addition, other exopolymeric substances (DNA, proteins) significantly increased under Cr(VI) and phenol treatment. These exopolymers are important for biofilm formation playing a key role in bacterial aggregate stability, being especially useful for bioremediation of environmental pollutants. This study yields the first direct evidences of a range of different changes in A. guillouiae SFC 500-1A which seems to be adaptive strategies to survive in stressful conditions.



http://ift.tt/2t7hGRA

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αναζήτηση αυτού του ιστολογίου