Ετικέτες

Σάββατο 22 Ιουλίου 2017

Constraints on primary and secondary particulate carbon sources using chemical tracer and 14C methods during CalNex-Bakersfield

S13522310.gif

Publication date: October 2017
Source:Atmospheric Environment, Volume 166
Author(s): Rebecca J. Sheesley, Punith Dev Nallathamby, Jason D. Surratt, Anita Lee, Michael Lewandowski, John H. Offenberg, Mohammed Jaoui, Tadeusz E. Kleindienst
The present study investigates primary and secondary sources of organic carbon for Bakersfield, CA, USA as part of the 2010 CalNex study. The method used here involves integrated sampling that is designed to allow for detailed and specific chemical analysis of particulate matter (PM) in the Bakersfield airshed. To achieve this objective, filter samples were taken during thirty-four 23-hr periods between 19 May and 26 June 2010 and analyzed for organic tracers by gas chromatography – mass spectrometry (GC-MS). Contributions to organic carbon (OC) were determined by two organic tracer-based techniques: primary OC by chemical mass balance and secondary OC by a mass fraction method. Radiocarbon (14C) measurements of the total organic carbon were also made to determine the split between the modern and fossil carbon and thereby constrain unknown sources of OC not accounted for by either tracer-based attribution technique.From the analysis, OC contributions from four primary sources and four secondary sources were determined, which comprised three sources of modern carbon and five sources of fossil carbon. The major primary sources of OC were from vegetative detritus (9.8%), diesel (2.3%), gasoline (<1.0%), and lubricating oil impacted motor vehicle exhaust (30%); measured secondary sources resulted from isoprene (1.5%), α-pinene (<1.0%), toluene (<1.0%), and naphthalene (<1.0%, as an upper limit) contributions. The average observed organic carbon (OC) was 6.42 ± 2.33 μgC m−3. The 14C derived apportionment indicated that modern and fossil components were nearly equivalent on average; however, the fossil contribution ranged from 32 to 66% over the five week campaign. With the fossil primary and secondary sources aggregated, only 25% of the fossil organic carbon could not be attributed. Whereas, nearly 80% of the modern carbon could not be attributed to primary and secondary sources accessible to this analysis, which included tracers of biomass burning, vegetative detritus and secondary biogenic carbon. The results of the current study contributes source-based evaluation of the carbonaceous aerosol at CalNex Bakersfield.



http://ift.tt/2vx70td

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αναζήτηση αυτού του ιστολογίου