Publication date: 15 December 2017
Source:Biosensors and Bioelectronics, Volume 98
Author(s): Chang Yeol Lee, Ki Soo Park, Hyun Gyu Park
We develop a novel approach to determine formamidopyrimidine DNA glycosylase (Fpg) activity by taking advantage of the unique fluorescence property of pyrrolo-dC (PdC) positioned opposite to 8-oxoguanine (8-oxoG) in duplex DNA. In its initial state, PdC in duplex DNA undergoes the efficient stacking and collisional quenching interactions, showing the low fluorescence signal. In contrast, the presence of Fpg, which specifically removes 8-oxoG and incises resulting apurinic (AP) site, transforms duplex DNA into single-stranded (ss) DNAs. As a result, the intrinsic fluorescence signal of PdC in ssDNA is recovered to exhibit the significantly enhanced fluorescence signal. Based on this Fpg-dependent fluorescence response of PdC, we could reliably determine Fpg activity down to 1.25U/ml with a linear response from 0 to 50U/ml. In addition, the diagnostic capability of this strategy was successfully demonstrated by reliably assaying Fpg activity in human blood serum, showing its great potential in the practical applications.
http://ift.tt/2sI6AO5
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
Ετικέτες
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
-
Summary Insulinomas are rare neuroendocrine tumours that classically present with fasting hypoglycaemia. This case report discusses an un...
-
The online platform for Taylor & Francis Online content New for Canadian Journal of Remote Sen...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου