Publication date: Available online 15 July 2017
Source:Magnetic Resonance Imaging
Author(s): Amin Nazaran, Michael Carl, Yajun Ma, Saeed Jerban, Yanchun Zhu, Xing Lu, Jiang Du, Eric Y. Chang
PurposeWe present three-dimensional adiabatic inversion recovery prepared ultrashort echo time Cones (3D IR-UTE-Cones) imaging of cortical bone in the hip of healthy volunteers using a clinical 3T scanner.MethodsA 3D IR-UTE-Cones sequence, based on a short pulse excitation followed by a 3D Cones trajectory, with a nominal TE of 32μs, was employed for high contrast morphological imaging of cortical bone in the hip of heathy volunteers. Signals from soft tissues such as muscle and marrow fat were suppressed via adiabatic inversion and signal nulling. T2⁎ value of the cortical bone was also calculated based on 3D IR-UTE-Cones acquisitions with a series of TEs ranging from 0.032 to 0.8ms. A total of four healthy volunteers were recruited for this study. Average T2⁎ values and the standard deviation for four regions of interests (ROIs) at the greater trochanter, the femoral neck, the femoral head and the lesser trochanter were calculated.ResultsThe 3D IR-UTE-Cones sequence provided efficient suppression of soft tissues with excellent image contrast for cortical bone visualization in all volunteer hips. Exponential single component decay was observed for all ROIs, with averaged T2⁎ values ranging from 0.33 to 0.45ms, largely consistent with previously reported T2⁎ values of cortical bone in the tibial midshaft.ConclusionsThe 3D IR-UTE-Cones sequence allows in vivo volumetric imaging and quantitative T2⁎ measurement of cortical bone in the hip using a clinical 3T scanner.
http://ift.tt/2tWV3g1
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
Ετικέτες
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
-
Summary Insulinomas are rare neuroendocrine tumours that classically present with fasting hypoglycaemia. This case report discusses an un...
-
The online platform for Taylor & Francis Online content New for Canadian Journal of Remote Sen...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου