Background: The reported incidence of mesh infection in contaminated operative fields is as high as 30% regardless of material used. Our laboratory previously showed that augmenting acellular bioprosthetic mesh with allogeneic mesenchymal stem cells (MSC) enhances resistance to bacterial colonization in vivo and preserves mesh integrity. This study's aim was to determine whether augmentation of non-crosslinked porcine dermis (Strattice) with commercially available, cryopreserved, viable MSC-containing human placental tissue (Stravix) similarly improves infection resistance after inoculation with Escherichia coli (E. coli) using an established mesh infection model. Methods: Stravix was thawed per manufacturer's instructions and 2 samples were tested for cell viability using a Live/Dead Cell assay at the time of surgery. Rats (N = 20) were implanted subcutaneously with 1 piece of Strattice and 1 piece of hybrid mesh (Strattice + Stravix sutured at the corners). Rats were inoculated with either sterile saline or 106 colony-forming units of E. coli before wound closure (n = 10 per group). At 4 weeks, explants underwent microbiologic and histologic analyses. Results: In E. coli–inoculated animals, severe or complete mesh degradation concurrent with abscess formation was observed in 100% (10/10) hybrid meshes and 90% (9/10) Strattice meshes. Histologic evaluation determined that meshes inoculated with E. coli exhibited severe acute inflammation, which correlated with bacterial recovery (P
http://ift.tt/2xc8fSv
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
Ετικέτες
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
-
Summary Insulinomas are rare neuroendocrine tumours that classically present with fasting hypoglycaemia. This case report discusses an un...
-
The online platform for Taylor & Francis Online content New for Canadian Journal of Remote Sen...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου