Publication date: October 2017
Source:Current Opinion in Neurobiology, Volume 46
Author(s): Cristina Savin, Gašper Tkačik
Neural responses are highly structured, with population activity restricted to a small subset of the astronomical range of possible activity patterns. Characterizing these statistical regularities is important for understanding circuit computation, but challenging in practice. Here we review recent approaches based on the maximum entropy principle used for quantifying collective behavior in neural activity. We highlight recent models that capture population-level statistics of neural data, yielding insights into the organization of the neural code and its biological substrate. Furthermore, the MaxEnt framework provides a general recipe for constructing surrogate ensembles that preserve aspects of the data, but are otherwise maximally unstructured. This idea can be used to generate a hierarchy of controls against which rigorous statistical tests are possible.
http://ift.tt/2ex3O9A
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
Ετικέτες
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
-
Summary Insulinomas are rare neuroendocrine tumours that classically present with fasting hypoglycaemia. This case report discusses an un...
-
The online platform for Taylor & Francis Online content New for Canadian Journal of Remote Sen...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου