Ετικέτες

Κυριακή 17 Σεπτεμβρίου 2017

Removal of arsenic III and V from laboratory solutions and contaminated groundwater by metallurgical slag through anion-induced precipitation.

Abstract

Metallurgical slag was used for the simultaneous removal of high concentrations of arsenite and arsenate from laboratory solutions and severely contaminated groundwater. Apart from demonstrating the high efficiency of arsenic removal in presence of competing species, the work aims to explore the physicochemical mechanisms of the process by means of microscopy observation and a detailed statistical analysis of existing kinetic and isotherm equations. Fitting was performed by non-linear least squares using weighted residuals; ANOVA and bootstrap methods were used to compare the models. Literature suggests that the metal oxides in the slag are efficient adsorbents of As(III) and (V). However, the low surface area of the slag precludes adsorption; SEM observation provide evidence of a mechanism of co-precipitation of lixiviated cations with contaminant anions. The reaction kinetics provide essential information on the interaction between the contaminants, particularly on the common ion effect in groundwater. The Fritz-Schlünder isotherm allows modelling the saturation effect at low slag doses. The efficiency of the process is demonstrated by an arsenic removal of 99% in groundwater using 4-g slag/L, resulting in an effluent with 0.01 mg As/L, which is below Mexican and international standards for drinking water.



http://ift.tt/2xIrUdi

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αναζήτηση αυτού του ιστολογίου