Ετικέτες

Παρασκευή 22 Σεπτεμβρίου 2017

Single Nucleotide Polymorphism relevance learning with Random Forests for Type 2 diabetes risk prediction

S09333657.gif

Publication date: Available online 22 September 2017
Source:Artificial Intelligence in Medicine
Author(s): Beatriz López, Ferran Torrent-Fontbona, Ramón Viñas, José Manuel Fernández-Real
ObjectiveThe use of artificial intelligence techniques to find out which Single Nucleotide Polymorphisms (SNPs) promote the development of a disease is one of the features of medical research, as such techniques may potentially aid early diagnosis and help in the prescription of preventive measures. In particular, the aim is to help physicians to identify the relevant SNPs related to Type 2 diabetes, and to build a decision-support tool for risk prediction.MethodsWe use the Random Forest (RF) technique in order to search for the most important attributes (SNPs) related to diabetes, giving a weight (degree of importance), ranging between 0 and 1, to each attribute. Support Vector Machines and Logistic Regression have also been used since they are two other machine learning techniques that are well-established in the health community. Their performance has been compared to that achieved by RF. Furthermore, the relevance of the attributes obtained through the use of RF has then been used to perform predictions with k-Nearest Neighbour method weighting attributes in the similarity measure according to the relevance of the attributes with RF.ResultsTesting is performed on a set of 677 subjects. RF is able to handle the complexity of features' interactions, overfitting, and unknown attribute values, providing the SNPs' relevance with an up to 0.89 area under the ROC curve in terms of risk prediction. RF outperforms all the other tested machine learning techniques in terms of prediction accuracy, and in terms of the stability of the estimated relevance of the attributes.ConclusionsThe Random Forest is a useful method for learning predictive models and the relevance of SNPs without any underlying assumption.



http://ift.tt/2hobrQF

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αναζήτηση αυτού του ιστολογίου