Publication date: December 2017
Source:Neurobiology of Aging, Volume 60
Author(s): Valerie Sackmann, Anna Ansell, Christopher Sackmann, Harald Lund, Robert A. Harris, Martin Hallbeck, Camilla Nilsberth
Neuroinflammation plays an influential role in Alzheimer's disease (AD), although the mechanisms underlying this phenomenon remain largely unknown. Microglia are thought to be responsible for the majority of these effects and can be characterized into resting (M0), proinflammatory (M1), or anti-inflammatory (M2) functional phenotypes. We investigated the effects of conditioned macrophage media, as an analogue to microglia, on the transfer of oligomeric amyloid beta (oAβ) between differentiated SH-SY5Y cells. We also investigated how the different inflammatory environments related to intercellular and intracellular changes. We demonstrate that M2 products decrease interneuronal transfer of oAβ, while recombinant interleukin (IL)-4, IL-10, and IL-13 increase transfer. There were no alterations to the mRNA of a number of AD-related genes in response to the combination of oAβ and M0, M1, or M2, but several intracellular proteins, some relating to protein trafficking and the endosomal/lysosomal system, were altered. Stimulating microglia to an M2 phenotype may thus slow down the progression of AD and could be a target for future therapies.
http://ift.tt/2zPQXrU
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
Ετικέτες
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
-
Summary Insulinomas are rare neuroendocrine tumours that classically present with fasting hypoglycaemia. This case report discusses an un...
-
The online platform for Taylor & Francis Online content New for Canadian Journal of Remote Sen...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου